
CS 140: Operating Systems
Syllabus

Winter 2014

Instructor
Name: Nathan Dautenhahn
Office: 4307A Siebel Center, 201 N Goodwin Ave, Urbana, IL 61801
Office Hours: MW: 9:00a - 10:00a or by appointment
Phone: (xxx) xxx-xxx
Email: dautenh1@illinois.edu

General Course Information
Website: CS140.com
Lecture: MW 4:15pm-5:30pm, Gates B01
Section: F 3:15pm-4:05pm Gates B01
Credits: 3 undergraduate hours
Education Requirement: This course does not fulfill any general requirements
Syllabus Flexibility: This syllabus is provided as a starting point for the semester.

Specific topics and duration of coverage may change as the
semester continues.

Course Overview and Purpose
We love operating systems and want to show you why you should too! This course will express
why we believe operating systems are fascinating and worth pursuing not only for course credit
but also experimenting with on your own. In this course we will explore the core principles of
operating systems design and implementation, including basic operating system structure; process
and thread synchronization and concurrency; file systems and storage servers; memory manage-
ment techniques; process scheduling and resource management; virtualization; and security. In our
study of operating systems we will encounter the following themes:

Resource sharing: concurrent threads of execution [enables] multitasking
Programmability: abstractions and library support [enables] easier application programming

1

CS 140: Operating Systems Course Syllabus Winter 2014

In this course we will explore operating systems design via the combination of readings, lectures,
homework assignments, collaborative programming projects, in-class participation, and online in-
teractions.

Readings and lecture content are the primary means of learning definitional concepts of oper-
ating systems design.

Homework assignments reiterate relationships and refine knowledge on core operating sys-
tems concepts, and also provide the primary means for test preparation.

Programming projects address the fact that operating systems are complex. They are large
and impractical to understand without first-hand knowledge of underlying mechanisms.
Therefore, to move beyond rote memorization of operating systems concepts we will im-
plement pivotal operating system features in a real world operating system.

Collaborative projects address the fact that operating systems are complex and large, so large
that it requires immense investment from multiple people to implement the entire system.
Therefore, a core point of emphasis in this course is working in teams to learn how to collab-
orate on large software projects (sharing code), communicate effectively, coordinate design
and implementation in a timely fashion, and write code that is sharable. Collaboration is a
key component to all but one programming project and integrates operating systems concepts
with team building characteristics.

Class participation and online interaction further asserts the necessity of collaboration when
investigating operating systems design.

Upon completion of this course you will be prepared to contribute to the next generation op-
erating system or enhance existing operating systems such as Windows, Mac OSX, Linux, *BSD,
and many more. You will also be able to integrate your efforts into existing software development
environments and be a contributing team member.

Prerequisites
This course assumes that you have a working knowledge of computer systems organization (UIUC
ECE 290) and the basics of UNIX systems programming (UIUC CS 241). This course relies
heavily on a working knowledge of the C programming language. Therefore, students should have
prior experience in C. It is possible to learn C at the outset of the course, but it will be challenging
to do so.

Course Themes and Objectives
We will take a hands-on approach to developing an intuitive and practical understanding of op-
erating systems design. We will emphasize programming exercises that connect course readings
and lectures to practical experience. We will also emphasize techniques for managing common
issues associated with large scale software development. As a student in this class you will have
the opportunity to learn to:

• Explicitly define and intuitively describe why operating systems virtualize hardware and how
the operating system both makes it possible for many applications to share resources and to
make programming easier for user space applications.

CS 140: Operating Systems Course Syllabus Winter 2014

• Describe the differences between user and kernel level operating modes and implement com-
munications interfaces in the kernel to support user level services, i.e., system calls.

• Describe and explain synchronization algorithms and utilize kernel synchronization mecha-
nisms for traditional kernel operations.

• Describe and implement thread context management and switching using kernel synchro-
nization and scheduling algorithms (i.e., priority scheduling and multilevel feedback queue).

• Design and implement a functional virtual memory system including virtual memory paging
and resource sharing functionality.

• Design and implement persistent and correct file system mechanisms including functionality
that utilizes a buffer cache, enables extensible files, and enables a hierarchical file name
space (e.g,. subdirectories).

• Collaboratively develop large complex programs in C utilizing standard operating systems
development toolchains including a debugger (GDB), build system (GNU Make), and a ver-
sion management system to both track and share code modifications (Git).

• Evaluate and analyze multiple competing approaches to common operating systems design
choices using micro and macro benchmarks.

• Read, interpret, and examine code that you did not write.

Materials
Required Text: Silberschatz, Abraham, Peter B. Galvin, and Greg Gagne. Operating System

Concepts. Vol. 8. Wiley, 2013.
Course Communications: We will use Piazza for communicating on course topics. Program-

ming assignments will be posted on Piazza and on the course website. Piazza is an excellent
resource for facilitating discussions and question and answer sessions. We anticipate that
many questions about any course issues will be brought up on Piazza so that your fellow
students can benefit from what you are learning.

Coding Resources:
• Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Vol. 2.

Englewood Cliffs: prentice-Hall, 1988.
• Stevens, W. Richard, and Stephen A. Rago. Advanced Programming in the UNIX

Environment. Pearson Education, 2013.

Git Version Control: http://git-scm.com/
Lab Equipment: You will find the institutional (UIUC CS) lab equipment to be prepared for

completing assigned programming projects. Each programming assignment will be com-
pleted in a simulated x86 environment (Qemu or Bochs).

Class Sessions
Class sessions will be comprised of traditional lecture materials, one to two short ungraded quizzes
(individual and group), short discussions on the trade-offs of competing solutions to common op-
erating system tasks, and a small amount of reserved time to answer questions about programming
projects. You can expect that class discussions will cover material not explicitly in the book or

CS 140: Operating Systems Course Syllabus Winter 2014

other materials, of which you will be responsible for on the exams. Developing a culture of ques-
tioning, analyzing, and discussing operating systems is a key goal of structuring lectures in this
way.

Assignments

Time Expectations
The programming projects involve developing practical understanding of operating systems con-
cepts and are extremely demanding! These assignments should be started the day of being handed
out and will take approximately 15 to 20 hours each. Do not underestimate the time required to
complete these assignments. In total, previous course students reported spending approximately
12 to 15 hours a week on this course including lecture attendance.

Programming Projects
Projects are the core mechanism for learning in this course. Operating systems are complex and
large pieces of software. Transferring knowledge from theoretical or conceptual models to real
understanding requires hands-on experience. You will be evaluated on your ability to convert the
conceptual knowledge from course readings and lectures to operating systems implementations
that mirror existing real world functionality. In these programming projects you will be imple-
menting parts of the Pintos operating system.

Projects will be completed in teams of up to 3 people. The teams will be assigned by the instruc-
tors at their discretion and will differ for each project. In this way you will have the opportunity to
work with several different people and perspectives during the course of the semester. We suggest
that teams attempt to use pair programming [http://en.wikipedia.org/wiki/Pair Programming] in an
effort to improve coding efforts; however, you will not be graded on this suggestion.

Project grading will be focused on functionality of the code when tested by our test suite. The
tests are designed so that they isolate as much program functionality as possible, thus, implementa-
tion efforts can be done in small chunks with measurable outcomes. Projects will be graded based
upon functional correctness, design documentation and coding style, performance evaluation on
real programs, and peer reviews of the code. Each of these are detailed as follows. Additionally,
we describe at a high level each project.

Code Functional Correctness Against Grading Tests

Functional correctness will account for 50% of the project grade.

Design Document

Each project will require a design document to be turned in with the code. We provide a design
template. The design document will require information about the following aspects of the project:
data structures, algorithms, synchronization, and rationale for the design. The last section of the

CS 140: Operating Systems Course Syllabus Winter 2014

design document will survey you about the project in general in an effort to obtain feedback on
the real challenges associated with the project. The design document is worth 25% of the project
grade.

Performance Evaluation of Implemented Code

A critical aspect of operating systems is to empirically compare differing design choices as it
relates to performance criteria. As such each programming assignment will require the team to
execute an evaluation of their implementation and present results in both written and graphical
form. The evaluation will account for 15% of the project grade.

Code Peer Review

Practical operating systems development environments require extensive ability to both docu-
ment your own code and read others’ code. Therefore, each project submission will be reviewed
individually by at least two non-team members in the class. Peer reviewers will be required to fill
out a set of rankings against a rubric that we pass out. The peer reviews will also include a two to
three paragraph description commenting on two of the following: design decisions and problems,
coding errors, comment support, and performance expectation from implementation. The peer re-
view will contribute 5% to the project grade of the code being reviewed as well as be graded by
the instructors for an individual 5% of your individual project grade.

Project 1: Threads and Synchronization

Project 1 requires you to enhance a minimally functioning threading system. The goal of this
project is to gain a deeper understanding of synchronization, scheduling algorithms, and interrupt
handling. This will be the only project accomplished without a team.

Project 2: Enabling User Level Programs

This project requires you to develop the system interface to user applications, namely system
calls. It requires you to develop several system calls to enable user programs to interface with the
file system. The system call implementation requires you to also learn how the calling convention
work for x86 system calls so that you can perform parameter passing to the system.

Project 3: Virtual Memory

This project requires you to enable the memory system by enabling virtual memory, including
adding paging support, stack growth, memory mapped file support, and protect user level pages
while in use by the kernel.

Project 4: File Systems

This project requires you to enhance the file system support in Pintos. Namely, you will imple-
ment a buffer cache and integrate it into the existing file system, add support for extensible files
and subdirectories, and manage synchronization to keep everything correct.

CS 140: Operating Systems Course Syllabus Winter 2014

Exams
There will be two exams throughout the course. The first will be a one hour exam in the middle

of the semester and the second will be a 2 hour comprehensive exam during the university specified
final examination time. The midterm will be worth 15% of the grade and the final exam will be
worth 25% of your final grade. Exams are worth a total of 40% of your final grade.

Homeworks
There will be two homeworks throughout the course, each worth 2.5% and count up to a total of

5% to the final grade. The primary goal of the homework is to provide questions relevant to exam
material; therefore, the homeworks will not be graded for correctness but rather for completion.

Grading
Homeworks 5%
Programming Projects 55%
Exams 40%
Total 100%

Grades will be given based upon a criterion-reference score according to the following scale:

A+ 97% A 93% A– 90%
B+ 87% B 83% B– 80%
C+ 77% C 73% C– 70%
D+ 67% D 63% D– 60%

Note that the minimum grade per range may be lowered but never raised.

Course Policies
We will follow all policies in the Student Code (http://admin.illinois.edu/policy/code/).

Professional Etiquette
We expect all of your interactions to be positive and never derogatory to anyone. We anticipate

personal differences, but as you interact with others on the discussion boards, within your projects,
and in-class, we expect common courtesy and never condone offensive behaviors.

Attendance and Online Interaction
You and your peers will benefit from your presence at lectures. Lectures may present material

(via questions and discussions) that will not be presented any where else, and they will also create
unique learning opportunities due to in-class activities; however, attendance will not be tracked.
Online interactions will similarly not be graded, but provide a method for continuing discussion
outside of class.

CS 140: Operating Systems Course Syllabus Winter 2014

Accommodations
If you require any special accommodations please contact the instructor immediately. All

accommodations will follow the procedures as stated in Article 1-110 of the Student Code
(http://admin.illinois.edu/policy/code/article1 part1 1-110.html).

Academic Integrity
The integrity of your work is a precious commodity. Any violations will ad-

dressed according to Articles 1-401 through 1-406 of the Student Code (beginning at
http://admin.illinois.edu/policy/code/article1 part4 1-401.html). Unless otherwise noted assume
that you are to work alone, copying or sharing code is not permissible between groups. Group
work will clearly state members who contributed to the effort. Discussion of specific challenges
and or design issues are encouraged and will even be facilitated in-class; however, code must be
isolated from other student projects. If you obtain information from another source in any way you
must cite it.

Late Assignments
Assignments can be turned in late at the cost of 1% of the final grade for each hour late.

CS 140: Operating Systems Course Syllabus Winter 2014

Course Schedule
__
Week_of	Monday________________	Wednesday____________	Friday_________________
Jan 6	Intro	Threads &	HW 1 Section
-	Text: Ch. 1-2	Processes	Threads
Jan_10_	______________________	Text:_Ch._3-4________	Due:_Lab_0_(setup)_____
Jan 13	Concurrency	Scheduling	
-	Text: Ch. 6-7, Birrell	Text: Ch. 5	no section
Jan_17_	______________________	_____________________	_______________________
Jan 20		Advanced scheduling	HW 2 Section
-	MLK Day		Userprog
Jan 24			Due: HW 1 (Threads)
_______	______________________	_____________________	Add/drop_deadline_(5pm)
Jan 27	Virtual Memory	Virtual Memory OS	
-	Hardware	techniques	no section
Jan_31_	Text:_Ch._8___________	Text:_Ch._9__________	_______________________
Feb 3	Synchronization	Memory allocation	Midterm Review Section
-			Due: HW 2 (Userprog)
Feb_7__	______________________	_____________________	_______________________
Feb 10		Linking	HW 3 Section
-	Midterm Quiz		VM
Feb_14_	______________________	_____________________	_______________________
Feb 17		I/O & Disks	
-	Presidents’ Day	Text: Ch. 12-13	no section
Feb_21_	______________________	_____________________	_______________________
	File Systems	Advanced File Systems	HW 4 Section
Feb 24	Text: Ch. 10-11		Filesys
-			Due: HW 3 (VM)
Feb 28			Course withdrawal
_______	______________________	_____________________	deadline_______________
Mar 3	Networking	Protection	
-	Text: Ch. 16	Text: Ch. 14	no section
Mar_7__	______________________	_____________________	_______________________
Mar 10	Security	Virtual Machines	Final Review Section
-	Text: Ch. 15		Due: HW 4 (File system)
Mar_14_	______________________	_____________________	_______________________

Final Exam Friday, March 21 12:15pm - 3:15pm

