
Nested Kernel: An Operating System
Architecture for Intra-Kernel Privilege Separation

Nathan Dautenhahn1, Theodoros Kasampalis1, Will Dietz1, John Criswell2, and Vikram Adve1
1University of Illinois at Urbana-Champaign, 2University of Rochester

{dautenh1, kasampa2, wdietz2, vadve}@illinois.edu, criswell@cs.rochester.edu

Abstract
Monolithic operating system designs undermine the security
of computing systems by allowing single exploits anywhere
in the kernel to enjoy full supervisor privilege. The nested
kernel operating system architecture addresses this problem
by “nesting” a small isolated kernel within a traditional
monolithic kernel. The “nested kernel” interposes on all
updates to virtual memory translations to assert protections
on physical memory, thus significantly reducing the trusted
computing base for memory access control enforcement. We
incorporated the nested kernel architecture into FreeBSD
on x86-64 hardware while allowing the entire operating
system, including untrusted components, to operate at the
highest hardware privilege level by write-protecting MMU
translations and de-privileging the untrusted part of the
kernel. Our implementation inherently enforces kernel code
integrity while still allowing dynamically loaded kernel
modules, thus defending against code injection attacks. We
also demonstrate that the nested kernel architecture allows
kernel developers to isolate memory in ways not possible
in monolithic kernels by introducing write-mediation and
write-logging services to protect critical system data struc-
tures. Performance of the nested kernel prototype shows
modest overheads: < 1% average for Apache and 2.7% for
kernel compile. Overall, our results and experience show
that the nested kernel design can be retrofitted to existing
monolithic kernels, providing important security benefits.

Categories and Subject Descriptors D.4.6 [Operating
Systems]: Organization and Design

Keywords intra-kernel isolation; operating system archi-
tecture; malicious operating systems; virtual memory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694386

1. Introduction
Critical information protection design principles, e.g., fail-
safe defaults, complete mediation, least privilege, and least
common mechanism [34, 40, 41], have been well known
for several decades. Unfortunately, monolithic commodity
operating systems (OSes), like Windows, Mac OS X, Linux,
and FreeBSD, lack sufficient protection mechanisms with
which to adhere to these design principles. As a result,
these OS kernels define and store access control policies in
main memory which any code executing within the kernel
can modify. The impact of this default, shared-everything
environment is that the entirety of the kernel, including
potentially buggy device drivers [12], forms a single large
trusted computing base (TCB) for all applications on the
system. An exploit of any part of the kernel allows complete
access to all memory and resources on the system. Conse-
quently, commodity OSes have been susceptible to a range
of kernel malware [27] and memory corruption attacks [5].
Even systems employing features such as non-executable
pages, supervisor-mode access prevention, and supervisor-
mode execution protection are susceptible to both user level
attacks [25] and kernel level threats that directly disable
these protections.

Traditional methods of applying these principles in
OS kernels either completely abandon monolithic design
(e.g., microkernels [3, 9, 28]) or rely upon transparent
enforcement of isolation via an external virtual machine
monitor (VMM) [15, 35, 44, 55, 56]. Microkernels require
extensive redesign and implementation of the operating
system. VMMs suffer from both performance issues and a
lack of semantic knowledge at the OS level to transparently
support protection easily; also, generating semantic knowl-
edge has been shown to be circumventable [6]. More recent
techniques to split existing commodity operating systems
into multiple protection domains using page protections [46]
or software fault isolation (SFI) [18] incur high overhead and
continue to trust “core” kernel code (which may not be all
that trustworthy [15, 16]).

To address this problem, we present a new OS organiza-
tion, the nested kernel architecture, which restricts MMU
control to a small subset of kernel code, effectively “nesting”

a memory protection domain within the larger kernel. The
key design feature in the nested kernel architecture is that
a very small portion of the kernel code and data operate
within an isolated environment called the nested kernel;
the rest of the kernel, called the outer kernel, is untrusted.
The nested kernel architecture can be incorporated into an
existing monolithic commodity kernel through a minimal
reorganization of the kernel design, as we demonstrate
using FreeBSD 9.0. The nested kernel isolates and mediates
modifications to itself and other protected memory by
1) configuring the MMU such that all mappings to protected
pages (minimally the page-table pages (PTPs)) are read-
only, and 2) ensuring that those policies are enforced at
runtime while the untrusted code is operating. Although sim-
ilar to a microkernel, the nested kernel only requires MMU
isolation and maintains a single monolithic address space
abstraction between trusted and untrusted components.

We present a concrete prototype of the nested kernel
architecture, called PerspicuOS, that implements the nested
kernel design on the x86-64 [2] architecture. PerspicuOS
introduces a novel isolation technique where both the outer
kernel and nested kernel operate at the same hardware
privilege level—contrary to isolation in a microkernel where
untrusted code operates in user-mode. PerspicuOS enforces
read-only permissions on outer kernel code by employing
existing, simple hardware mechanisms, namely the MMU,
IOMMU, and the Write-Protect Enable (WP) bit in CR0,
which enforces read-only policies even on supervisor-mode
writes. By using the WP-bit, PerspicuOS efficiently toggles
write-protections on transitions between the outer kernel and
nested kernel without swapping address spaces or crossing
traditional hardware privilege boundaries.

PerspicuOS ensures that the outer kernel never disables
write-protections (e.g., via the WP-bit) by 1) de-privileging
the outer kernel code and 2) maintaining that de-privileged
code state by enforcing lifetime kernel code integrity—a
key security property explored by several previous works,
most notably SecVisor [43] and NICKLE [38]. PerspicuOS
de-privileges outer kernel code by replacing instances of
writes to CR0 with invocations of nested kernel services and
enforces lifetime kernel code integrity by restricting outer
kernel code execution to validated, write-protected code. In
this way PerspicuOS creates two virtual privileges within the
same hardware privilege level, thus virtualizing ring 0.

By isolating the MMU, the nested kernel architecture
can enforce intra-kernel memory isolation policies that trust
only the nested kernel. Therefore, the nested kernel archi-
tecture exposes two intra-kernel write-protection services
to kernel developers: write-mediation and write-logging.
Write-mediation enables kernel developers to deploy se-
curity policies that isolate and control access to critical
kernel data, including kernel code. In some cases, data
may require valid updates from a large portion of the
kernel, making it hard to protect kernel objects in place,

or otherwise not have an applicable write-mediation policy;
consequently, we present the write-logging interface that
ensures all modifications to protected kernel objects are
recorded (a design principle suggested by Saltzer et al. [41]).

To demonstrate the benefit of the write-mediation and
write-logging facilities—for enhancing commodity OS
security—we present three intra-kernel write-protection
policies and applications. First, we introduce the write-
once mediation policy that only allows a single update to
protected data structures, and apply it to protect the system
call vector table, defending against kernel call hooking [27].
In general, the write-once policy presents a novel defense
against non-control data attacks [11]. Second, we introduce
the append-only mediation policy that only allows append
operations to list type data structures, and apply it to
protect data generated by a system call logging facility.
Additionally, the system call logging facility guarantees
invocation of monitored events, a feature made possible
by PerspicuOS’s code integrity property, and therefore
supports a pivotal feature required by a large class of
security monitors [35, 44]. Third, we deploy a write-logging
policy to track modifications to FreeBSD’s process list data
structures, allowing our system to detect direct kernel object
manipulation (DKOM) attacks used by rootkits to hide
malicious processes [27].

We have retrofitted the nested kernel architecture into an
existing commodity OS: the FreeBSD 9.0 kernel. Our ex-
perimental evaluation shows that this reorganization requires
approximately 2000 lines of FreeBSD code modifications
while significantly reducing the TCB of memory isolation
code to less than 5000 lines of nested kernel code. Our
prototype also demonstrates that it is feasible to completely
remove MMU modifying instructions from the untrusted
portion of the kernel while allowing it to operate in ring 0.
Furthermore, our experiments show that the nested kernel
architecture incurs very low overheads for relatively OS-
intensive system benchmarks: < 1% for Apache and 2.7%
for a full kernel compile. In summary, the key contributions
of this paper include

• A new OS organization strategy, the nested kernel
architecture, which nests, within a monolithic kernel, a
higher privilege protection domain that enables kernel
developers to explicitly apply intra-kernel security poli-
cies through the use of write-mediation and write-logging
services.

• A novel x86-64 implementation of the nested ker-
nel architecture, PerspicuOS, that virtualizes supervisor
privilege, thereby keeping the outer kernel and the
nested kernel at the highest protection level; PerspicuOS
uses only the MMU and control registers to protect
memory, in lieu of VMM extensions, expensive page
table manipulation, or costly compiler techniques.

• An evaluation of three intra-kernel memory access
control policies: a write-once policy to protect access to

the system call table, a write-logging policy that detects
rootkits attempting to hide processes, and an append-only
system call logging facility with incorruptible logs and
guaranteed invocation.

• An OS design that provides lifetime kernel code integrity,
defending against a large class of kernel malware.

2. Nested Kernel Approach
The primary insight and contribution of the nested kernel
architecture is to demonstrate how to virtualize a minimal
subset of hardware functionality, specifically the MMU, to
guarantee mediation and therefore isolation of intra-kernel
protection domains. By virtualizing the MMU, the nested
kernel architecture enables a new set of protection policies
based upon physical page resources and their mappings
within the kernel. This section presents the nested kernel
architecture overview, our foundational design principles,
and the challenges of virtualizing the MMU; it concludes
with a description of the nested kernel write protection
service made available to kernel developers.

2.1 System Overview
The nested kernel architecture partitions and reorganizes a
monolithic kernel into two privilege domains: the nested
kernel and the outer kernel. The nested kernel is a subset
of the kernel’s code and data that has full system privilege,
and most importantly, the nested kernel has sole privilege
to modify the underlying physical MMU (pMMU) state.
The nested kernel mediates outer kernel modifications to the
MMU via a virtual interface, which we refer to as the virtual
MMU (vMMU). The outer kernel is then modified to use the
vMMU.

Similar to previous work [15, 43], the nested kernel
architecture isolates pMMU updates at the final stage
of creating a virtual to physical translation: the point at
which a virtual-to-physical translation is made active on the
processor (i.e., when the processor can use the translation).
For example, on the x86-64, address mappings are added to
the system by storing a value to a virtual memory location,
called a page-table entry (PTE), that resides on a page-table
page (PTP) [2]. By selecting this abstraction, the outer kernel
still manages all aspects of the virtual memory subsystem;
however, the nested kernel interposes on all pMMU updates,
thereby allowing the nested kernel to isolate the pMMU and
enforce any other access control policy in the system, such
as the one used to protect nested kernel code and data.

2.2 Design Principles
The nested kernel architecture comprises the mechanism and
interface to establish virtual address mappings. As such, we
seek to accomplish the following:

Separate resource control (e.g., policy) from protection
mechanism (e.g., MMU). We seek the lowest level of
abstraction possible to virtualize the MMU, providing only

a mechanism that performs updates to virtual-to-physical
address mappings. This principle has several benefits: it
minimizes the TCB of the privileged domain, maximizes
the portability of the nested kernel, and gives maximum
flexibility to the types of policies implemented in the outer
kernel while maintaining isolation of the nested kernel.

Operating system co-design and explicit interface. OS
designers are experts in how their systems work: they
represent the best opportunity to enhance the security of the
system. Therefore, the nested kernel architecture presents a
unified design to realize protections explicitly within the OS
rather than transparently enforcing protections via external
tools, such as in the case with prior work [35, 43, 44].

Privilege separation based upon MMU state, not instruc-
tions. Traditionally, systems use the notion of rings of
protection, where each ring prescribes what instructions
may be executed by code in that ring. In contrast, we
enforce privilege separation in terms of access to the pMMU,
including both memory (e.g,. PTPs) and CPU state (e.g.,
WP-bit in CR0).

Minimal architecture dependence. We want to make the
nested kernel architecture design as hardware agnostic as
possible, assuming only a hardware paging mechanism with
page-granularity protections and the ability to enforce write-
protections on outer kernel code.

Fine grained resource control. The protections enabled
by virtualizing the MMU can be expressed in many ways;
we seek to enable fine grained resource control, i.e.,
protections at byte-level granularity, so that intra-kernel
isolation policies can be applied to arbitrary OS data
structures.

Negligible performance impact. The nested kernel archi-
tecture provides isolation and privilege separation without
requiring separate address spaces so that it can be applied
to operating system architectures with minimal overhead.
In our x86-64 prototype, we also run both the outer kernel
and nested kernel in the same protection ring (ring 0) rather
than via hardware virtualization extensions to avoid costly
hypercalls, as evidenced by measurements in Section 5.3.

2.3 Virtualizing the MMU via API Emulation
We summarize the runtime isolation of the pMMU as the
following property, which Invariants I1 and I2 enforce:

Nested Kernel Property. The nested kernel interposes on
all modifications of the pMMU via the vMMU.

Invariant 1. Active virtual-to-physical mappings for pro-
tected data are configured read-only while the outer kernel
executes.

Invariant 2. Write-protection permissions in active virtual-
to-physical mappings are enforced while the outer kernel
executes.

Active virtual-to-physical mappings are those mappings
that may be used by the processor to determine page
protections; inactive mappings do not affect memory access
privileges. Invariant I2 applies to those processors (such as
the x86 [2]) which can disable page protections while still
performing virtual-to-physical address translation. While
these definitions are independent of whether the MMU uses
hardware- or software-managed TLBs, we will assume a
hardware-managed TLB to simplify discussion.

On a hardware-TLB system, the nested kernel architec-
ture enforces Invariant I1 by 1) requiring explicit initial-
ization of PTPs, 2) creating an explicit interface to update
the page-table entries (PTEs), and 3) configuring all PTEs
that map PTPs as read-only. Therefore, any PTP that has not
been explicitly initialized at boot time by the nested kernel
or declared by the outer kernel via the vMMU is rejected
from use, enforcing Invariant I1.

Invariant I2 can be enforced by a variety of mechanisms,
including internal page protection mechanisms such as used
in our prototype or external mechanisms such as a virtual
machine monitor running at a higher hardware privilege
level. Section 3.2 details how we ensure Invariant I2 is
enforced in PerspicuOS on the x86-64 architecture.

2.4 Intra-Kernel Memory Write Protection Services
By isolating the pMMU from the outer kernel, the nested
kernel can fully enforce memory access control policies on
any physical page in the system. For example, the nested
kernel can write-protect all statically defined constant data or
a subset of system call function pointers that never change at
runtime. Therefore, the nested kernel architecture provides
a simple, robust API for specifying and enforcing such
policies on kernel memory. The write-protection services
API, listed in Table 1, comprises memory allocation and a
data write function with an accompanying byte-granularity
mediation policy.

Clients use the intra-kernel protection services to al-
locate regions of memory that are protected by and only
written from nested kernel code. When an allocation is
requested, either statically via nk declare or dynamically
via nk alloc, the nested kernel initializes a write descriptor
and allocates an associated memory region. The nested
kernel also establishes the memory bounds for the region and
sets the mediation callback function (as defined below) that
implements the write-protection policy. The nested kernel
returns to the client both the write descriptor and virtual
address of the newly allocated write protected region, and
finally, write-protects all existing mappings to the physical
pages containing the memory region.

Clients specify write-protection policies in the form of
mediation functions. Mediation functions enforce the update
policies for write-protected kernel objects, and are invoked
by the nested kernel prior to any writes. One example of a
simple mediation function is a no-write policy for constant
data, with function body, return false;, which rejects all

writes to the memory region. A more complex example is a
write-once policy, such as described in Section 4.1.1, where
the nested kernel initializes a bitmap for each byte in the
allocated memory region, then upon an nk write, validates
that the write is only made to memory not previously written.
A significant value of the write-protection interface is that
even in the absence of a mediation function (e.g., all writes
to the object are permitted), the updates must use nk write,
thus thwarting overwrites from memory corruption bugs.

Once a write descriptor, nk wd, is created, the outer
kernel executes mediated writes via the nk write function.
nk write operates similarly to a simple byte-level memory
copy operation. nk write performs two checks prior to
executing the write: 1) it verifies that the write is within
the boundary of the region specified by nk wd, and 2) it
invokes the mediation function, if any. By allowing clients to
write only a subset of the memory region, the nested kernel
allows protection of aggregate data types without requiring
any knowledge about its fields. The interface also makes
bounds checking fast by including the write descriptor for
constant-time lookup of the descriptor information for the
given region.

To fully support dynamically allocated memory, the
nested kernel provides nk free, which deallocates memory
previously allocated by nk alloc. Because an OS exploit
could prematurely force nk free to be called on a memory
region and then attempt to store to it, any freed memory
must be retained in protected memory, and so we design
a simple interface that assumes the allocator is part of the
nested kernel.

2.5 Preventing DMA Memory Writes
The nested kernel must also prevent DMA writes to
protected memory. We require that the system have an
IOMMU [1] that the nested kernel can use to ensure that
DMA operations do not modify any pages protected by the
nested kernel.

3. PerspicuOS: A Nested Kernel Prototype
We present a concrete implementation of the nested kernel
architecture, named PerspicuOS, for x86-64 processors.
PerspicuOS introduces a novel method for ensuring privilege
separation between the outer kernel and the nested kernel
while running both at the highest hardware privilege level,
effectively creating two virtual privilege levels in ring 0.
PerspicuOS achieves this goal by taking advantage of x86-
64 hardware support for efficiently enabling and disabling
MMU write protection enforcement and by controlling
which privileged instructions can be used by outer kernel
code. More specifically, PerspicuOS applies the design
presented in Section 2.3, by configuring all mappings to
PTPs as read-only and de-privileging the outer kernel so
that it cannot disable write-protection enforcement at ring
0. PerspicuOS de-privileges the outer kernel by scanning

Function Selected Arguments Purpose
nk declare mem start, size, mediation func Marks all pages RO; initializes an NK write descriptor nk wd; returns the

nk wd and the pointer to the region.
nk alloc size, mediation func, nk wd p Allocates memory region; invokes nk declare on it; stores write descriptor in

nk wd; returns nk wd and pointer to the region.
nk free nk wd Deallocates memory identified by nk wd. Memory must have been allocated

by nk alloc. Freed pages can be reused only by a future nk alloc.
nk write dest, src, size, nk wd Verifies write bounds; invokes mediation func, if any; then copies

size bytes from src to dest.

Table 1. Nested Kernel Write Protection API. nk declare is for static allocation and nk alloc is for dynamic allocation.

all outer kernel code to ensure that it does not contain
instructions that disable the WP-bit or the MMU. Additional
hardware features (described in Section 3.5) prevent user-
space code or kernel data from being used to disable
protections.

In this section, we describe our threat model, specify a
set of invariants to maintain the Nested Kernel Property,
and then discuss how PerspicuOS maintains the invariants
through a combination of virtual privilege switch manage-
ment, MMU configuration validation, and lifetime kernel
code integrity.

3.1 Threat Model and Assumptions
In this work, we assume that the outer kernel may be
under complete control of the attacker who can attempt
to arbitrarily modify CPU state. Furthermore, we assume
that an attacker can modify outer kernel source code, i.e.,
that outer kernel code may be malicious. Moreover, we do
not assume or require outer kernel control flow integrity,
which means that an attacker can arbitrarily target any
memory location on the system for execution. For example,
since nested kernel and outer kernel code may reside in a
unified address space, an attacker could attempt to redirect
execution to arbitrary locations within nested kernel code,
including instructions that toggle write-protections (i.e., the
nested kernel must take explicit steps to prevent such control
transfers or render them harmless).

We assume that the nested kernel source code and
binaries are trusted and that the nested kernel is loaded with a
secure boot mechanism such as in AEGIS [45] or UEFI [48].
We also trust mediation functions, a necessary requirement
to ensure security checks execute in PerspicuOS. We assume
that the nested kernel and mediation functions are free
of vulnerabilities, and given the small source code size
(less than 5,000 lines-of-code), the nested kernel could be
formally or manually verified. Furthermore, we assume that
the hardware is free of vulnerabilities and do not protect
against hardware attacks.

3.2 Protection Properties and Invariants
The nested kernel design specifies two invariants that must
hold to enforce the Nested Kernel Property. Invariant I1
requires that all active mappings to PTPs be configured as
read-only; Invariant I2 requires that these configurations be

Nested&
Kernel&
Init&

Secure
Boot

Outer&
Kernel&

Nested&
Kernel&

User&
Process&

System call

Nested
Kernel Op.

INTR / Trap

INTR / Trap

Entry gate

Exit gate Exit
gate

Unchecked jump

Trap Gate

Figure 1. PerspicuOS State Transition Diagram. Only
shaded blocks can execute PerspicuOS privileged operations
(Table 2). All transitions out of the nested kernel must go
through the Exit Gate.

enforced while the outer kernel is in operation. We system-
atically assessed the x86-64 architecture specification [2]
to identify both the necessary hardware configurations to
realize invariants I1 and I2 and the hardware configurations
that may violate those invariants. For example, write-
protections are enforced on supervisor-mode accesses when
both the WP-bit is set and the mapping is configured
as read-only; however, alternative execution modes, such
as System Management Mode (SMM), can bypass write-
protections when invoked. From this assessment, we derive
the following invariants that ensure that invariants I1 and I2
hold.

3.2.1 Supporting Invariant I1
The set of active mappings in x86-64 is controlled by the
CR3 register and a set of in-memory PTPs [2]. CR3 specifies
the base address of a “top-level” page serving as the root
for a hierarchical translation data structure that is traversed
by the MMU [2]. To ensure that all translations to protected
physical pages are marked as read-only (thereby asserting
I1), PerspicuOS enforces the following invariants:

Invariant 3. Ensure that there are no unvalidated mappings
prior to outer kernel execution.

Invariant 4. Only declared PTPs are used in mappings.

Invariant 5. All mappings to PTPs are marked read-only.

Invariant 6. CR3 is only loaded with a pre-declared top-
level PTP.

3.2.2 Supporting Invariant I2
PerspicuOS must ensure that, while the outer kernel is
operating, MMU write-protections are continually enforced.
Read-only permissions are enforced by x86-64 when the
processor is operating in long mode with write-protections
enabled, i.e., Protected Mode Enable (PE-bit), Paging En-
abled (PG-bit), and Write-Protect Enable (WP-bit) bits are
set in CR0; Physical Address Extensions (PAE-bit) bit is
set in CR4; and Long Mode Enable (LME-bit) bit is set
in the EFER model specific register (MSR) [2]. Therefore,
PerspicuOS considers scenarios where the outer kernel at-
tempts to 1) disable the WP-bit while in operation, 2) disable
paging by modifying the PG-bit, or 3) subvert control flow
of the nested kernel so that the outer kernel gains control of
execution while the WP-bit has been legitimately disabled
for nested kernel operations. PerspicuOS ensures that the
WP-bit is always set while the outer kernel is in operation
and that any instantaneous mode changes that could disable
paging, such as an SMM interrupt, are directed to nested
kernel control.

Invariants I7 and I8 capture the requirements of the WP-
bit.

Invariant 7. The WP and PG flags in CR0 are set prior to
any outer kernel execution.

Invariant 8. The WP-bit in CR0 is never disabled by outer
kernel code.

When the PG-bit is disabled, the processor immediately
interprets virtual addresses as physical addresses [2]. As
Section 3.7 describes, preventing the outer kernel from
clearing the PG-bit is impossible. Instead, PerspicuOS
enforces the following invariant:

Invariant 9. Disabling the PG-bit directs control flow to the
nested kernel.

Additionally, SMM may be invoked by the outer kernel
and therefore, PerspicuOS must also assert control on the
SMI interrupt.

Invariant 10. The nested kernel controls the SMM interrupt
handler and operation.

Given that the previous set of invariants hold, the outer
kernel might attempt to manipulate CPU state or outer
kernel memory in such a way as to cause control-flow
to move from nested kernel code to outer kernel code
without re-enabling the WP-bit. Therefore, to ensure write-
protections are always enforced, PerspicuOS must protect
against control-flow attacks on nested kernel execution in
two specific cases: interrupt control flow paths and nested
kernel stack state manipulation.

PerspicuOS ensures that all exit paths from the nested
kernel to the outer kernel enable the WP-bit (shown in
Figure 3), which is captured in the following invariant:

Invariant 11. Enable the WP-bit on interrupts and traps
prior to calling outer kernel interrupt/trap handlers.

Because the trap handlers are a part of the nested kernel,
the Interrupt Descriptor Table (IDT) [2] must be placed
in protected memory and modifications of the Interrupt
Descriptor Table Register (IDTR) must be solely a nested
kernel operation.

Invariant 12. The IDT must be write-protected, and the
IDTR is only updated by the nested kernel.

On a multiprocessor system, code running in outer kernel
context on one core could modify the return address stored
on the stack by code running in nested kernel on another
core if the stack is in outer kernel memory. This would
cause nested kernel code to return to outer kernel context
without enabling the WP-bit. Therefore, PerspicuOS must
ensure that code running in the nested kernel uses its own
stack located in nested kernel memory.

Invariant 13. The nested kernel stack is write-protected
from outer kernel modifications.

3.3 System Initialization
PerspicuOS must ensure that all mappings to protected pages
(e.g. PTPs, code, nested kernel data, etc.) are configured
as read-only and that paging is enabled prior to outer
kernel execution, as suggested by invariants I3 and I7.
Therefore, PerspicuOS, as depicted in Figure 1, initializes
the paging system so that invariants I3—where validation
implies invariants I4, I5, and I6 by registering all protected
pages in nested kernel data structures—and I7 are enforced
prior to outer kernel execution by using secure boot and
“nested kernel init” functionality, thereby initializing all
PTEs in the system.

3.4 Virtual MMU Interface
PerspicuOS provides a set of functions, called the nested
kernel operations, that allow the outer kernel to configure
the pMMU. The nested kernel operations interpose on un-
derlying x86-64 instructions, called protected instructions,
to isolate the pMMU. There are two classes of nested
kernel operations: those that control the configuration of the
hardware PTPs via memory writes and those that control
updates to processor control registers.

The nested kernel enforces pMMU update policies by
assigning types to physical pages based upon the kind of
data stored in each physical page. The page types include
PTPs, nested kernel code and data, outer kernel code and
data, user code and data, and data protected by the intra-
kernel write-protection service. This type information, along
with the number of active mappings and a list of all virtual
address mappings to the page, is kept in a physical page
descriptor.

The outer kernel uses the nk declare PTP operation
to specify the physical pages to be used as PTPs. The

Operation x86 Instruction Description Constraints
nk declare PTP None Initialize physical page descriptor as usable in page tables Asserting invariant I4
nk write PTE mov VAL, PTEADDR Update pMMU mapping Asserting invariants I4 and I5
nk remove PTP mov VAL, PTEADDR Remove physical page from being used as PTP Supporting invariants I4, I5, and I6.
nk load CR0 mov %REG, %CR0 Controls enforcement of read-only mappings WP-bit must be set: invariant I8
nk load CR3 mov %REG, %CR3 Controls MMU mapping base PML4 page Value must be a declared PML4-PTP
nk load CR4 mov %REG, %CR4 Controls user mode execution with SMEP flag CR4 SMEP flag must be 1
nk load MSR wrmsr Value, MSR Control enforcement of no-execute permissions EFER NX-Bit must be set to 1

Table 2. Nested Kernel Operations, Protected Instructions, Description, and Constraints

nk declare PTP operation takes, as arguments, the level
within the page table hierarchy at which the physical page
will be used and the address of the physical page being
declared, then zeros each page to eliminate any stale data,
write-protects all existing virtual mappings to the physical
page, and registers the physical page as a PTP by updating
the page’s physical page descriptor.

Once declared, a physical page cannot be modified
directly by outer kernel code. Instead, the outer kernel uses
the nk write PTE operation, which inspects and validates
all mappings prior to insertion. The nested kernel uses the
previously described physical page type information along
with a list of existing mappings to each page to ensure that
1) if the PTE does not point to a data page then it targets
a declared PTP and 2) all mappings to PTPs are write-
protected, thereby ensuring invariants I4 and I5 respectively.
The nested kernel also protects nested kernel code, data, and
stack pages to avoid code modifications that would eliminate
mediation or functionality of the pMMU update process. We
also ensure that the update does not write to any kernel data
protected by the nested kernel; this is done via a simple
check that ensures that the physical page being updated was
previously declared as a page table page.

The second group of operations configure the paging
hardware itself. We expose an interface for updating CR3 to
ensure that it only points to a declared top-level PTP, called
PML4-PTP, thereby ensuring invariant I6. The interface for
modifying other registers ensures that paging and lifetime
kernel code integrity protections are not disabled by outer
kernel code. The description of these mechanisms are in
Sections 3.5 and 3.7.

3.5 Lifetime Kernel Code Integrity
To prevent protected instructions from being executed while
in outer kernel context, PerspicuOS first validates all code
before making it executable in supervisor-mode, and second,
protects the runtime integrity of validated code by enforcing
lifetime kernel code integrity, thereby maintaining invariants
I6 and I8. PerspicuOS enforces load time outer kernel
code validity by scanning binary code to ensure that it
does not contain any protected instructions, including at
unaligned instruction boundaries. Then PerspicuOS enforces
dynamic lifetime outer kernel code integrity by configuring
the processor and pMMU so that 1) by default all kernel
pages are mapped as non-executable (enforced by the no-

entry:
pushfq Save current flags

cli Disable interrupts

mov %rax, -8(%rsp) Spill regs for temps

mov %rcx, -16(%rsp)
mov %rsp, %rcx Save stack ptr in rcx

mov %cr0, %rax Get current CR0 value

and ˜CR0_WP,%rax Clear WP bit in copy

mov %rax, %cr0 Write back to CR0

cli Disable interrupts

mov PerCPUSecureStack,%rsp Switch to secure stack

push %rcx Save orig stack ptr

mov -0x8(%rcx), %rax Restore spilled regs

mov -0x10(%rcx), %rcx

Figure 2. Nested Kernel Entry.

exit:
mov 0(%rsp), %rsp Restore orig stack ptr

push %rax Spill scratch reg

mov %cr0, %rax Get current CR0 value

1:
or CR0_WP, %rax Set WP in CR0 copy

mov %rax, %cr0 Write back to CR0

test CR0_WP, %eax Ensure WP set

je 1b If not, loop back

pop %rax Restore clobbered reg

popfq Restore flags

(incl interrupt status)

Figure 3. Nested Kernel Exit

execute bit (NX-bit) in the EFER MSR), 2) validated kernel
code pages are mapped with read-only permissions, and 3)
user-space code and data are mapped as non-executable in
supervisor-mode by employing supervisor-mode execution
prevention (SMEP in CR4) [2], thereby preventing the outer
kernel from executing any protected instructions contained
within user-mode pages. Note that because protecting the
nested kernel depends upon kernel code integrity both EFER
and CR4 must also be removed from outer kernel’s ability
to execute and are thus protected instructions as depicted in
Table 2.

3.6 Virtual Privilege Switches
In PerspicuOS, the nested kernel and outer kernel share a
single address space. Therefore, nested kernel operations are
essentially function calls to nested kernel functions that are
wrapped by entry and exit gates that (among other things)
disable and enable the WP-bit. Virtual privilege switches
occur when write-protection is disabled (which only occurs

on nested kernel operations). In this section, we detail
PerspicuOS entry and exit gates and describe the ways in
which PerspicuOS ensures that the outer kernel does not
gain control while write protections are disabled (enforcing
I11, I13) and how the gates ensure that mediation functions
execute (ensuring I4 and I5).

3.6.1 Nested Kernel Entry and Exit Gates
The nested kernel entry and exit gates ensure that there
is a clear and protected privilege boundary between the
nested kernel and the outer kernel. The routines depicted
in Figures 2 and 3 perform the virtual privilege switch.
The entry gate (Figure 2) disables interrupts, turns off
system-wide write protections, disables interrupts, and then
switches to a secure nested kernel stack; the exit gate
(Figure 3) executes the reverse sequence. PerspicuOS by
default disables interrupts while in operation; however, we
include the second interrupt disable instruction to avoid
instances where the outer kernel invokes interrupts that may
corrupt internal nested kernel state.

3.6.2 Interrupts
PerspicuOS disables interrupts when executing in the nested
kernel. Because the nested kernel is limited to a very small
set of functionality, disabling interrupts is not expected
to impact performance. Disabling interrupts simplifies the
design of nested kernel operations because they can execute
atomically: they do not need to contend with the possibility
of being interrupted. However, long-running mediation
functions may need to run with interrupts enabled—we leave
supporting this feature as future work.

PerspicuOS must also ensure that the WP-bit is set
whenever either a trap occurs or if the outer kernel directly
invokes the WP-bit disable instruction and subsequently
manages to execute an interrupt prior to the second interrupt
disable instruction. This is necessary because an attacker
could feed inputs to a mediated function that causes it to
generate a trap; if the handler runs in the outer kernel, it
would be running with write-protection disabled. Perspic-
uOS protects against these attacks by isolating the x86-
64 interrupt handler table [2], enforcing invariant I12, and
configuring it to send all interrupts and traps through the
nested kernel trap gate first—depicted in Figure 1; the nested
kernel trap gate sets the WP-bit before transferring control
to an outer kernel trap handler, following a similar loop as
the exit gate starting at assembly label “l” in Figure 3, thus
enforcing invariant I11.

3.6.3 Nested Kernel Stack
To enforce invariant I13, PerspicuOS includes separate
stacks for the nested kernel. Upon entry to the nested kernel,
PerspicuOS saves the existing outer kernel stack pointer and
switches to a preallocated nested kernel stack, as shown
in Figure 2. When exiting the nested kernel, PerspicuOS
restores the original outer kernel stack pointer (Figure 3).

3.6.4 Ensuring Write Mediation
By mapping the nested kernel code into the same address
space as the outer kernel, PerspicuOS gains in efficiency on
privilege switches; however, the outer kernel can directly
jump to instructions that modify the protected state. For
example, the outer kernel can target the instruction that
writes to PTP entries, thus, bypassing the vMMU mediation.
However, such a write will fail with a protection trap because
the jump would have bypassed the entry gate, which is
the only way to turn off the system-wide write protections
enforced by the WP-bit (Figure 2). In this way, PerspicuOS
ensures that either mediation will occur or the system will
detect a write violation.

3.7 Privileged Register Integrity
While the protections in Section 3.5 prevent the outer kernel
from directly modifying privileged registers (e.g., CR0,
CR3, IDTR), it is possible for the outer kernel to jump to
instructions within the nested kernel that configure these
registers. To protect against this, the nested kernel unmaps
pages containing these instructions from the virtual address
space when the outer kernel is executing and maps them
only when needed. Invariants I6, protecting CR3, and I12,
protecting IDTR, are enforced using this method because
direct modification of these registers can allow the outer
kernel to instantly gain control.

While this works for most privileged registers, it does
not work for CR0 (to enforce I8) because the entry and
exit gates must toggle write protections, and therefore the
instruction to disable CR0 must be mapped into the same
address space as the outer kernel. Therefore, the outer kernel
could load a value into the RAX register and jump to the
instruction in the entry and exit gates that move RAX into
CR0. Ideally, the entry and exit gates would use bit-wise OR
and AND instructions with immediate operands to set and
clear the WP-bit in CR0. Unfortunately, the x86-64 lacks
such instructions; it can only copy a value in a general
purpose register into a control register [2]. Note that the
protected instruction “mov %REG, %CR0” is only mapped
at three code locations, the entry, exit, and trap gates.

Entry gates do not require verification of the value loaded
to CR0 because the purpose of the entry gate is to disable
the WP-bit; in contrast, exit and trap gates return control-
flow to the outer kernel after modifying CR0. The exit and
trap gates must therefore ensure that the WP-bit is enabled.
To do so, PerspicuOS inserts a simple check and loop in
the exit gate to ensure that the value of RAX has the WP-bit
enabled, thus ensuring invariant I8. Since these are the only
instances of writes to CR0 in the code, PerspicuOS ensures
that outer kernel attacks cannot bypass write-protections by
using these instructions.

In the x86-64 architecture, paging is enabled when the
processor is in either protected mode with paging enabled
(both PG-bit and PE-bit set) or long mode (PG, PE, PAE,

and the LME bits set). To handle the situation where the
outer kernel disables the PG-bit (regardless of whether the
CPU is in long or protected mode), PerspicuOS configures
the MMU so that the virtual address of the entry gate
matches a physical address containing code that traps
into the nested kernel. Therefore, enforcing invariant I9
whenever the PG-bit is disabled.

If either the PAE-bit or LME-bit are disabled while the
CPU is in long mode a general protection fault occurs.
Because the bits are not updated but instead a trap occurs, the
write-protections continue to be enabled and do not require
any other solution. According to the Intel Architecture
Reference Manual, the PE-bit cannot be disabled unless
the PG-bit is also disabled [2], which is handled by the
previously described solution.

3.8 Allocating Protected Data Structures
PerspicuOS presents the intra-kernel write-protection inter-
face as described in Section 2.4 for allocating and updating
write protected data structures. PerspicuOS establishes a
predefined ELF memory region to protect global statically-
defined data structures. Kernel developers declare write-
protected data structures with a C macro that uses a special
compiler directive to notify the linker to allocate the object
into the specified region. The macro then registers the object
into the write descriptor table along with the precomputed
bounds and generates both the nk wd and pointer to the
region. PerspicuOS provides for dynamic allocation via the
interface as described in Section 2.4. The shadow process
list example uses this interface, which is described in
Section 4.1.3.

One of the primary challenges of implementing the nested
kernel write protection services is to devise a method for
conquering the protection granularity gap [51], specifically
the issue of protecting data co-located on pages with non-
protected data. The nested kernel interface can fully support
in-place protections but would result in poor performance:
each unprotected object would require a trap and emulate
cycle. Therefore, we modify the linker script to put this
protected ELF region onto its own set of separate pages so
that only write-protected data is placed in the region. At
boot time, pages belonging to this protected ELF section are
write-protected via MMU configuration to ensure the Nested
Kernel Property for each of these data structures.

3.9 Mediation Functions
In an ideal nested kernel implementation, mediation func-
tions would not be in the TCB. This would keep the TCB
small regardless of the number of policies and would allow
policies to be mutally distrusting. However, to simplify
implementation, and to ensure that the mediation functions
are executed prior to writes, mediation functions are incor-
porated into PerspicuOS’s TCB. In our evaluation of the
write protection interface, we present a set of predefined
trusted mediation functions (which, like the mediation

functions in an ideal design, do not write to nested kernel
memory).

3.10 Implementation
We implemented PerspicuOS in FreeBSD 9.0. We replaced
all instances of writes to PTPs to use the appropriate
nested kernel API function and inserted validation checks
as Section 3.4 describes. We modified the trap handlers
to check for and enable the WP-bit; however, we did
not implement the IDT and IDTR protections. We believe
that these will not impact performance as modern OS
kernels rarely modify the IDT and IDTR. We ported and
implemented nested kernel calls for each function in Table 2.
These calls perform the requested operation and verify that
the value in the register is correct. We ported all instances
of writes to MSRs to ensure the NX bit is always set in
EFER; however, we did not fully implement no-execute
page permissions in the PTPs. We do not believe these will
negatively impact performance as the nested kernel already
interposes on all MMU updates and sets other protection bits
accordingly. We also implemented an offline scanner for the
kernel binary; we have applied this to the entire core kernel
but not to dynamically loaded kernel modules (this is a minor
matter of engineering).

Our current implementation uses coarse-gained synchro-
nization even though our evaluation is on a uni-processor. It
uses a single nested kernel stack with a lock to protect it from
concurrent access. We did not implement protections for
DMA writes or enforce nested kernel control on SMI events;
however, we do not believe they will negatively impact
performance because these are rare events under normal
operation. Last, we did not fully implement all features to
enforce Invariant I6; however, we did implement code that
updates a PTE and flushes the TLB to simulate mapping
and unmapping the code that modifies CR3. We believe
this faithfully represents the performance costs of the full
solution.

4. Enforcing Intra-Kernel Security Policies
The nested kernel architecture permits kernel developers to
employ fundamental design principles such as least privilege
and complete mediation [41]. In this section, we explore
several intra-kernel security policies enabled by the nested
kernel. Our examples demonstrate the nested kernel’s ability
to combat key mechanisms used by well-known classes of
kernel malware such as rootkits [27].

We emphasize that our use cases do not completely solve
specific high-level security goals (such as preventing rootkits
from evading detection). However, they demonstrate specific
key elements for complete solutions. Developing complete
solutions is part of our ongoing work.

4.1 Nested Kernel Write Mediation Policies
The nested kernel provides kernel developers with the ability
to prevent or monitor memory writes at run-time. We

illustrate three write-protection policies that this interface
can enforce; each can be used for multiple security goals.

4.1.1 Write-Once Data
Several kernel data structures are written to only once, when
they are initialized. Other structures are initialized to default
values and are only changed once during operation (e.g., the
system call table). Our interface can protect these data with
very low overhead.

As such, PerspicuOS implements a simple, byte-
granularity, write-once policy within the nested kernel. It
is enforced by maintaining a bit-vector with one bit per byte,
initialized to zeroes. When nk write is called, it uses a
mediation function that checks whether each bit is set for
the memory to be modified; if all the bits are clear, it writes
the data and marks those corresponding bits as being written.

We apply the write-once policy to protect the FreeBSD
system call table by allocating the table within nested
kernel-protected pages and selecting the write-once policy,
guaranteeing that it can never be overwritten by malware
after initialization. This application defends against kernel
malware that “hook” system call dispatch by overwriting
entries in the system call table to invoke exploit code [27],
and could be extended to protect other key kernel code
pointers.

4.1.2 Append-Only Data
Operating systems also have append-only data structures
such as circular buffers and event logs. These data structures
reside in ordinary kernel memory and are vulnerable to
kernel exploits, making them unreliable for forensics use.

To protect such data structures, PerspicuOS implements
an append-only write policy within the nested kernel. It is
enforced by maintaining a “tail” pointer to a list structure
within the nested kernel. Each call to nk write increments
the tail pointer to ensure that writes never overwrite existing
data within the region. A stricter policy could ensure that no
gaps exist between successive writes. A full solution must
also be able to securely write the log to disk when full, which
our prototype does not yet do.

We used this policy to implement a system call event
logger that records system call entry and exit events in a
statically allocated, append-only buffer. System call record-
ing has been a popular target in both research systems [22,
23, 32, 36] and security monitoring applications [19, 21,
26, 33, 35, 44, 52]. However, these systems are susceptible
to attack [49]. By protecting the log buffer, we ensure that
rootkits cannot hide traces of malicious system call events
and strengthen security staffs’ ability to conduct forensics
investigations after breakins. Further effort is required to
write the logs out to another media for long term storage,
and to defend against an attacker that spoofs security events.

4.1.3 Write Logging
A rootkit’s primary goal is to hide itself and malicious
processes and files. Therefore, they often modify kernel data
such as network counters, process lists, and system event
logs [27]. Some of these data are challenging to protect due
to being co-located within large kernel data structures; others
cannot be protected by simple write-once and append-only
policies. However, the ability to reliably monitor writes to
such data enables detection of all malicious modifications.

Therefore, we implement a general write-logging mech-
anism that records (and can later reconstruct) all writes
to selected data structures. All calls to nk write for a
memory region declared with this policy record the range of
addresses modified and the values written into the memory.
Again, this buffer must be periodically written to disk.

As an example use case of the interface, we use write-
logging to detect rootkits that attempt to hide processes by
corrupting FreeBSD’s process list data structure: allproc.
Instead of logging writes to allproc directly, we created
a shadow allproc data structure that exactly mirrors the
original list. Each shadow list entry contains a pointer back
to the corresponding allproc entry, and any updates to
the allproc list structure (e.g., unlinking a node) are also
performed on the shadow list. More importantly, to fully
hide the presence of a particular process from the kernel,
the rootkit must use nk write to remove the shadow entry
from the shadow list (which is logged).

The logging of shadow list writes enables effective
forensics. Security monitors can easily reconstruct the list
updates and identify the prior existence of hidden processes.
Moreover, we modified the ps program to query the shadow
list instead of the allproc list so that the ps program can
detect the presence of hidden processes.

4.2 System Protection Policies
The nested kernel architecture can also realize several
system security properties because it controls all virtual
memory mappings in the system. One example is lifetime
kernel code integrity (as Section 3.5 explains). This single
use case effectively thwarts an entire class of kernel malware
(namely code injection attacks). In addition to code integrity,
PerspicuOS also marks memory pages as non-executable by
default and enables superuser mode execution prevention
of user-mode code and data. Even if commodity kernels
use these hardware features, they cannot prevent malware
from disabling them. PerspicuOS, in contrast, enables these
protections and prevents malicious code from disabling
them. PerspicuOS can also be used for any type of security
monitor that inserts explicit calls into source code to ensure
that the monitor both executes and is isolated from the
untrusted code.

5. Evaluation
We evaluate PerspicuOS by investigating the impact on the
TCB, FreeBSD porting effort, de-privileging scanner, and
performance overheads.

We evaluated the overheads of PerspicuOS on a Dell
Precision T1650 workstation with an Intel R© CoreTM i7-
3770 processor at 3.4 GHz with 8 MB of cache, 16 GB
of RAM, and an integrated PCIE Gigabit Ethernet card.
Experiments requiring a network used a dedicated Gigabit
ethernet network; the client machine on the network was
an Acer Aspire Revo R3700 with an Intel R© AtomTM D525
processor at 1.8 GHz with 2 GB of RAM. We evaluate
five systems for each of our tests: the original (unmodified)
FreeBSD system, the base PerspicuOS, and each of our
three use cases: append-only, which is used for system call
entry and exit recording; write-once, used for the system call
table protection; and write-log, used for the shadow process
list. The baseline for the syscall use case was the original
FreeBSD modified so that it is logging system call entry and
exit events.

5.1 Trusted Computing Base and Kernel Porting
The nested kernel requires porting existing functionality in
a commodity kernel to use the nested kernel operations.
Our port of FreeBSD to the nested kernel architecture
modified 52 files totalling ∼1900+ LOC changed, including
comments. The vast majority of deleted lines were to config-
uration or build system files—ignoring these, only ∼100−
LOC were eliminated in the port. Code modifications were
measured using Git change logs. We measure the number
of lines in the nested kernel with the SLOCCount tool [53]:
the implementation consists of ∼4000 C SLOC and ∼800
assembly SLOC; the scanner was implemented in 248
python SLOC.

5.2 Code Scanning Results
To evaluate the feasibility of eliminating all instances of
protected instructions from the outer kernel, we scanned our
compiled kernels and subsequently used manual methods to
eliminate all unaligned protected instructions. We found a
total of 40 implicit instructions for writing to CR0 (2) and
wrmsr (38). Most of these instances are due to constants
embedded in the code used for relative addressing; therefore,
we eliminated them by adjusting alignments, rearranging
functions, and inserting nops. A few were due to particular
sequences of arithmetic expressions; these were addressed
by replacing them with equivalent computation. Finally, a
small number of constants in the outer kernel code contained
implicit instructions. These were addressed by replacing
the each constant with two others that were dynamically
combined to create the equivalent value.

5.3 Privilege Boundary Microbenchmark
To investigate the impact of different privilege crossings
against the nested kernel architecture approach, we devel-

Privilege Boundary Time (µsecs) Time / NK Call
NK Call 0.1390 1.00x
Syscall 0.08757 0.62x

VMCALL 0.5130 3.69x

Table 3. Privilege Boundary Crossing Costs.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

null syscall

open/close

m
m

ap

page fault

signal handler install

signal handler delivery

fork + exit

fork + exec

T
im

e
(R

el
at

iv
e

to
 N

at
iv

e)

PerspicuOS AppendOnly WriteOnce WriteLog

Figure 4. LMBench results.

oped a simple microbenchmark that evaluates the round trip
cost into a null function for each privilege boundary: syscall,
nested kernel call, and VMM call (hypercall).

For the syscall boundary experiment we used the syscall
instruction to invoke a special system call added to the
kernel that immediately returns. The VMM boundary cost
experiment is performed using a guest kernel consisting
solely of VMCALL instructions in a loop executing within
a VMM modified to resume the guest immediately after
this instruction traps to the VMM. The nested kernel cost
experiment uses an empty function wrapped with the entry
and exit gates as described in Section 3.6.1.

The microbenchmark performs each call one million
times and reports total elapsed time. Each microbenchmark
configuration was executed 5 times with negligible variance,
and the computed average time per call is reported.

Our results, shown in Table 3, indicate that a nested
kernel call is approximately 3.69 times less expensive than
a hypercall, thus motivating the performance benefits of
implementing the nested kernel architecture at a single su-
pervisor privilege level. User-mode to supervisor-mode calls
are faster than nested kernel calls, which take approximately
1.59 times as long.

5.4 Micro-benchmarks
To evaluate the effect that PerspicuOS has on system
call performance, we ran experiments from the LMBench
benchmark suite [30]. Figure 4 shows the results for our
four systems relative to the original FreeBSD. In most cases,
our systems are, at most, 1.25 times slower relative to the
baseline (unmodified) FreeBSD kernel. mmap, fork+exit,
and fork+exec, however, exhibit higher execution time
overheads of approximately 2.5 to 3 times. This is because
these benchmarks stress the vMMU with several consecutive
calls to set up new address spaces. Upon investigation, we

 0

 0.2

 0.4

 0.6

 0.8

 1

1 4 16 64 256
1024

4096
16384

B
an

dw
id

th
 (

R
el

at
iv

e
to

 N
at

iv
e)

File Size (KB)

PerspicuOS AppendLog WriteOnce WriteLog

Figure 5. SSHD Average Bandwidth.

identified a small set of functions that were responsible for
most of this behavior, and preliminary experiments showed a
reduction by more than 60% when converting these to batch
operations. In the future, we plan to extend the nested kernel
interface to allow for batch updates to the vMMU in order to
reduce overheads for these operations.

We also observe that the write-once and write-log policies
incur the same overheads as the base PerspicuOS system,
whereas the append-only policy used for system call entry
and exit recording incurs higher overheads. In fact, the worst
relative overhead for this system is the null syscall

benchmark; it occurs because each null system call makes
two nested kernel operations calls.

5.5 Application Benchmarks
To evaluate the overheads on real applications, we measured
the performance of the FreeBSD OpenSSH server, the
Apache httpd server running on the PerspicuOS kernel,
and a kernel compile. We opted to use network servers as
they exercise kernel functionality more heavily than many
compute bound applications and are therefore more likely to
be impacted by kernel overhead.

OpenSSH Server: For the OpenSSH experiments, we
transferred files ranging from 1 KB to 16 MB in size from
the server to the client. We transferred each file 20 times,
measuring the bandwidth achieved each time. Figure 5
shows the average bandwidth overhead, relative to native,
for each file size transferred. The maximum bandwidth
reduction is 20% for 1 KB files. Transferring files above 64
KB in size has less than 2% reduction in bandwidth.

Apache: For the Apache experiments, we used Apache’s
benchmark tool ab to perform 10000 requests using 32
concurrent connections over a 1Gbps network for file sizes
ranging from 1 KB to 1 GB. We performed this experiment
20 times for each file size, and present the results in Figure 6.
The experiment results reveal negligible, if any, overheads
that are within the standard deviation error.

Kernel Build: The kernel build experiment cleaned and
built a FreeBSD kernel from scratch for a total of 3 runs

 0

 0.2

 0.4

 0.6

 0.8

 1

1 4 16 64 256
1024

4096
16384

65536

262144

1048576

B
an

dw
id

th
 (

R
el

at
iv

e
to

 N
at

iv
e)

File Size (KB)

PerspicuOS AppendLog WriteOnce WriteLog

Figure 6. Apache average bandwidth.

PerspicuOS AppendOnly WriteOnce WriteLog
2.6% 3.0% 2.6% 2.7%

Table 4. Kernel Build Overhead over Native.

(the variance was virtually negligible). The worst run times
are shown in Table 4. The results show an overhead of about
2.6% for the base PerspicuOS, system call table, and process
list configurations; and an overhead of 3% for the system call
entry/exit case.

6. Future Work
There are several directions for future work. First, we plan
to investigate methods for removing mediation functions
from the TCB. Mediation functions do not need to write
to protected memory and could be excluded from the TCB
by running them with write-protections enabled. Second,
although the nested kernel provides a sufficient interface
to protect data structures, techniques are needed to ensure
that policy-enforcing code stores all critical data within the
nested kernel. Third, we plan to formally verify Perspic-
uOS’s design to improve assurance of its correctness.

Additionally, we will explore applications of PerspicuOS.
For example, moving the kernel memory allocator into the
nested kernel could protect the kernel from memory safety
attacks that overwrite allocator meta-data [5]. Additionally,
we could move the access control functionality into the
nested kernel, thereby ensuring that attacks on the operating
system kernel cannot subvert its access controls.

7. Related Work
The core contributions of this work include a new OS organi-
zation, the nested kernel architecture, for providing privilege
separation and isolation within a single monolithic kernel,
and a unique method for implementing it on commodity
hardware with PerspicuOS.

Operating System Organizations. Several alternative op-
erating system designs provide privilege separation and
memory isolation, including microkernels [3, 9, 28], Ex-
oKernels [8, 17], and separation kernels [39]. OSes written

in type safe languages also provide inherent security im-
provements [4, 9, 42]. While these approaches isolate kernel
components and mediate access to critical data structures,
they completely abandon commodity OS design.

MMU Protections. The nested kernel architecture isolates
the MMU by modifying the outer kernel so that MMU
updates can be mediated, and exports an interface similar
to those of related efforts including Xen [7], SVA-OS [13–
15, 20] and paravirtops [54]. Although the interface
is similar, the nested kernel architecture employs different
pMMU policies to protect and virtualize the MMU, as well
as introduces de-privileging to isolate the nested kernel.
SecVisor employs similar MMU policies to enforce kernel
code integrity [43] as PerspicuOS; however, SecVisor uses
special nested paging hardware support that uses implicit
traps on certain hardware events, which is both external
to the kernel and has higher costs per invocation than
PerspicuOS.

Intra-Kernel Memory Isolation. SILVER [55] and
UCON [56] specify policy frameworks (similar to manda-
tory access control) to enforce access control policies on
internal kernel objects using VMM hardware. SILVER
exports an access control service that is used by the operating
system to specify principals and object ownership access
policies through the memory allocator, which are then
enforced by the VMM. In contrast, PerspicuOS uses the
x86-64 WP-bit to provide a memory isolation mechanism
on which SILVER access control polices could be overlaid.

Nooks [46] provides lightweight protection domains for
kernel drivers and modules. Nooks uses the hardware MMU
to create protection domains and changes hardware page
tables when transferring control between the core kernel
and the kernel driver. Although Nooks provides reliability
guarantees, it does not consider isolation from malicious
entities, and therefore is susceptible to attack.

Compiler Based Intra-Kernel Memory Isolation. Several
previous efforts [10, 18] employ software fault isolation
(SFI) and control-flow integrity (CFI) to isolate kernel
components. These systems utilize heavy weight compiler
instrumentation in addition to address translation policies
to isolate kernel components. LXFI [29] uses programmer
annotations to specify interface policy rules between kernel
extensions and the core kernel and inserts run-time checks
to enforce these rules. In contrast, PerspicuOS does not
require compiler-based enforcement mechanisms, alleviates
the need for kernel control-flow integrity, and removes the
core kernel from the TCB.

Hypervisor Based Isolation. Both SVA [15] and Hyper-
Safe [50] employ the MMU and the WP-bit to prevent
privileged system software from making errant changes to
page tables. However, these approaches require control flow
integrity, and furthermore the HyperSafe work claimed that

using the WP approach on a monolithic kernel would be too
challenging due to shared code and data pages.

Several approaches deploy security monitors to protect
and record certain kernel events: each has drawbacks.
Several such approaches place the monitor in the same
TCB as the untrusted code, leaving them vulnerable to
attack [31, 37, 47]. Other systems, namely Lares [35] and
the In-VM monitor SIM [44], place the monitor in a VMM
(using nested paging support) to provide integrity guarantees
about the isolation and invocation of the security monitor.
These systems suffer from high performance costs [35]
or assume integrity of the code region [44]. VMM-based
monitors must also address VMM introspection problems:
the monitor does not understand the semantics of kernel data
structures [19, 24]. In PerspicuOS, security monitors are
isolated from the monitored system, can be invoked much
more efficiently via direct nested kernel operations instead of
expensive VMM hypercalls, and completely avoid the VMM
introspection problem.

KCoFI [13], SecVisor [43], and NICKLE [38] provide
kernel code integrity. SecVisor and NICKLE also ensure
that only authorized code runs in the processor’s privileged
mode. PerspicuOS enforces the same policies, but also
includes a novel memory isolation mechanism.

8. Conclusion
This paper presents the nested kernel architecture, a new
OS organization that provides important security benefits
to commodity operating systems that was retrofitted to an
existing monolithic kernel. We show that the two nested
kernel architecture components, the nested kernel and the
outer kernel, can co-exist in the highest hardware protection
level in a common address space without compromising
the isolation guarantees of the system. The nested kernel
architecture can efficiently support useful write-mediation
policies, such as write-once and append-only, which OS
developers can use to incorporate new security policies with
very low performance overheads. More broadly, we expect
that the nested kernel architecture can improve OS security
by enabling OS developers to incorporate richer security
principles like complete mediation, least privilege, and least
common mechanism, for selected OS functionality.

Acknowledgments
The authors would like to thank Audrey Dautenhahn for her
editorial services, and Maria Kotsifakou, Prakalp Srivastava,
and Matthew Hicks for refining our ideas via technical
and writing discussions. Our shepherd Peter Druschel and
the anonymous reviewers provided valuable feedback that
greatly enhanced the quality of this paper. This work was
sponsored by ONR via grant number N00014-12-1-0552
and supported in part by ONR via grant number N00014-
4-1-0525, MURI via contract number AF Subcontract UCB
00006769, and NSF via grant number CNS 07-09122.

References
[1] AMD64 architecture programmers manual volume 2: System

programming. Manual, Advancd Micro Devices, 2006.

[2] Intel 64 and IA-32 architectures software developers manual.
Manual 325384-051US, Intel, June 2014.

[3] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. In Proceedings of the USENIX
Annual Technical Conference, USENIX ATC’10, pages 93–
112, Altanta, GA, USA, 1986. USENIX Association.

[4] M. Aiken, M. Fhndrich, C. Hawblitzel, G. Hunt, and J. Larus.
Deconstructing process isolation. In Proceedings of the 2006
Workshop on Memory System Performance and Correctness,
MSPC ’06, pages 1–10, New York, NY, USA, 2006. ACM.

[5] argp and Karl. Exploiting UMA, FreeBSD’s kernel memory
allocator. .:: Phrack Magazine ::., 0x0d(0x42), Nov. 2009.

[6] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan,
J. Rhee, and D. Xu. DKSM: Subverting virtual machine
introspection for fun and profit. In Proceedings of the
2010 29th IEEE Symposium on Reliable Distributed Systems,
SRDS ’10, pages 82–91, Washington, DC, USA, 2010. IEEE
Computer Society.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP ’03,
pages 164–177, New York, NY, USA, 2003. ACM.

[8] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazires,
and C. Kozyrakis. Dune: Safe user-level access to
privileged CPU features. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 335–348, Berkeley, CA,
USA, 2012. USENIX Association.

[9] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility safety and performance in the SPIN operating
system. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, SOSP ’95, pages 267–283,
New York, NY, USA, 1995. ACM.

[10] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis,
A. Donnelly, P. Barham, and R. Black. Fast byte-granularity
software fault isolation. In Proceedings of the ACM SIGOPS
22nd symposium on Operating Systems Principles, SOSP ’09,
pages 45–58, New York, NY, USA, 2009. ACM.

[11] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.
Non-control-data attacks are realistic threats. In Proceedings
of the 14th Conference on USENIX Security Symposium -
Volume 14, SSYM’05, pages 12–12, Berkeley, CA, USA,
2005. USENIX Association.

[12] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. In Proceedings
of the Eighteenth ACM Symposium on Operating Systems
Principles, SOSP ’01, pages 73–88, New York, NY, USA,
2001. ACM.

[13] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI:
Complete control-flow integrity for commodity operating

system kernels. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy, SP ’14, pages 292–307, Washington,
DC, USA, 2014. IEEE Computer Society.

[14] J. Criswell, N. Dautenhahn, and V. Adve. Virtual ghost:
Protecting applications from hostile operating systems. In
Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS ’14, pages 81–96, New York, NY, USA,
2014. ACM.

[15] J. Criswell, N. Geoffray, and V. Adve. Memory safety for low-
level software/hardware interactions. In Proceedings of the
18th Conference on USENIX Security Symposium, SSYM’09,
pages 83–100, Berkeley, CA, USA, 2009. USENIX Associa-
tion.

[16] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure
virtual architecture: A safe execution environment for
commodity operating systems. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles,
SOSP ’07, pages 351–366, New York, NY, USA, 2007. ACM.

[17] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An operating system architecture for application-
level resource management. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, SOSP ’95,
pages 251–266, New York, NY, USA, 1995. ACM.

[18] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software guards for system address
spaces. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, OSDI ’06, pages 75–88,
Berkeley, CA, USA, 2006. USENIX Association.

[19] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In
Proceedings of the Network and Distributed System Security
Symposium, NDSS 2003, San Diego, California, USA. The
Internet Society, 2003.

[20] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. InkTag: Secure applications on an untrusted
operating system. In Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, pages 265–
278, New York, NY, USA, 2013. ACM.

[21] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. J. Comput. Secur.,
6(3):151–180, Aug. 1998.

[22] N. Honarmand, N. Dautenhahn, J. Torrellas, S. T. King,
G. Pokam, and C. Pereira. Cyrus: Unintrusive application-
level record-replay for replay parallelism. In Proceedings
of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’13, pages 193–206, New York, NY, USA, 2013.
ACM.

[23] N. Honarmand and J. Torrellas. Replay debugging:
Leveraging record and replay for program debugging. In
Proceeding of the 41st Annual International Symposium
on Computer Architecuture, ISCA ’14, pages 445–456,
Piscataway, NJ, USA, 2014. IEEE Press.

[24] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion. SoK:
Introspections on trust and the semantic gap. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy, SP
’14, pages 605–620, Washington, DC, USA, 2014. IEEE
Computer Society.

[25] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis.
ret2dir: Rethinking kernel isolation. In Proceedings of
the 23rd USENIX Conference on Security Symposium,
SEC’14, pages 957–972, Berkeley, CA, USA, 2014. USENIX
Association.

[26] S. T. King and P. M. Chen. Backtracking intrusions. In
Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, SOSP ’03, pages 223–236, New York,
NY, USA, 2003. ACM.

[27] J. Kong. Designing BSD Rootkits. No Starch Press, San
Francisco, CA, USA, 2007.

[28] J. Liedtke. On micro-kernel construction. In Proceedings
of the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, pages 237–250, New York, NY, USA,
1995. ACM.

[29] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F.
Kaashoek. Software fault isolation with API integrity and
multi-principal modules. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11,
pages 115–128, New York, NY, USA, 2011. ACM.

[30] L. McVoy and C. Staelin. lmbench: Portable tools for
performance analysis. In Proceedings of the 1996 Annual
Conference on USENIX Annual Technical Conference, ATEC
’96, pages 23–23, Berkeley, CA, USA, 1996. USENIX
Association.

[31] Microsoft. Kernel patch protection: frequently asked
questions (windows drivers), 2007.

[32] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo:
A software-hardware interface for practical deterministic
multiprocessor replay. In Proceedings of the 14th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIV, pages 73–
84, New York, NY, USA, 2009. ACM.

[33] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel. Anomalous
system call detection. ACM Trans. Inf. Syst. Secur., 9(1):61–
93, Feb. 2006.

[34] E. I. Organick. The Multics System: An Examination of Its
Structure. MIT Press, Cambridge, MA, USA, 1972.

[35] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An
architecture for secure active monitoring using virtualization.
In Proceedings of the 2008 IEEE Symposium on Security
and Privacy, SP ’08, pages 233–247, Washington, DC, USA,
2008. IEEE Computer Society.

[36] G. Pokam, K. Danne, C. Pereira, R. Kassa, T. Kranich, S. Hu,
J. Gottschlich, N. Honarmand, N. Dautenhahn, S. T. King,
and J. Torrellas. QuickRec: Prototyping an intel architecture
extension for record and replay of multithreaded programs. In
Proceedings of the 40th Annual International Symposium on
Computer Architecture, ISCA ’13, pages 643–654, New York,
NY, USA, 2013. ACM.

[37] C. Ries. Defeating windows personal firewalls: Filtering
methodologies, attacks, and defenses. Technical report, 2005.

[38] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention
of kernel rootkits with VMM-based memory shadowing. In
Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection, RAID ’08, pages 1–20,
Berlin, Heidelberg, 2008. Springer-Verlag.

[39] J. M. Rushby. Design and verification of secure systems.
In Proceedings of the Eighth ACM Symposium on Operating
Systems Principles, SOSP ’81, pages 12–21, New York, NY,
USA, 1981. ACM.

[40] J. H. Saltzer. Protection and the control of information sharing
in multics. Commun. ACM, 17(7):388–402, July 1974.

[41] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the IEEE,
63(9):1278–1308, 1975.

[42] T. Saulpaugh and C. A. Mirho. Inside the JavaOS operating
system. Addison-Wesley Reading, 1999.

[43] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor:
A tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 335–350, New York, NY, USA, 2007. ACM.

[44] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-VM
monitoring using hardware virtualization. In Proceedings of
the 16th ACM Conference on Computer and Communications
Security, CCS ’09, pages 477–487, New York, NY, USA,
2009. ACM.

[45] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. AEGIS: Architecture for tamper-evident and
tamper-resistant processing. In Proceedings of the 17th
Annual International Conference on Supercomputing, ICS
’03, pages 160–171, New York, NY, USA, 2003. ACM.

[46] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving
the reliability of commodity operating systems. ACM Trans.
Comput. Syst., 23(1):77–110, Feb. 2005.

[47] A. Tereshkin. Rootkits: Attacking personal firewalls. In
Proceedings of the Black Hat USA 2006 Conference, 2006.

[48] I. Unified EFI. Unified extensible firmware interface
specification: Version 2.2d, November 2010.

[49] D. Wagner and P. Soto. Mimicry attacks on host-based
intrusion detection systems. In Proceedings of the 9th ACM
Conference on Computer and Communications Security, CCS
’02, pages 255–264, New York, NY, USA, 2002. ACM.

[50] Z. Wang and X. Jiang. HyperSafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity. In
Proceedings of the 2010 IEEE Symposium on Security and
Privacy, SP ’10, pages 380–395, Washington, DC, USA,
2010. IEEE Computer Society.

[51] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel
rootkits with lightweight hook protection. In Proceedings of
the 16th ACM Conference on Computer and Communications
Security, CCS ’09, pages 545–554, New York, NY, USA,
2009. ACM.

[52] C. Warrender, S. Forrest, and B. A. Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In
1999 IEEE Symposium on Security and Privacy, SP ’99,
pages 133–145, Oakland, California, USA, May 1999. IEEE
Computer Society.

[53] D. Wheeler. SLOCCount, 2015.
http://www.dwheeler.com/sloccount/.

[54] C. Wright. Para-virtualization interfaces, 2006.
http://lwn.net/Articles/194340.

[55] X. Xiong and P. Liu. SILVER: Fine-grained and transparent
protection domain primitives in commodity OS kernel. In

S. J. Stolfo, A. Stavrou, and C. V. Wright, editors, Research
in Attacks, Intrusions, and Defenses, number 8145 in Lecture
Notes in Computer Science, pages 103–122. Springer Berlin
Heidelberg, Jan. 2013.

[56] M. Xu, X. Jiang, R. Sandhu, and X. Zhang. Towards a
VMM-based usage control framework for OS kernel integrity
protection. In Proceedings of the 12th ACM Symposium
on Access Control Models and Technologies, SACMAT ’07,
pages 71–80, New York, NY, USA, 2007. ACM.

	Introduction
	Nested Kernel Approach
	System Overview
	Design Principles
	Virtualizing the MMU via API Emulation
	Intra-Kernel Memory Write Protection Services
	Preventing DMA Memory Writes

	PerspicuOS: A Nested Kernel Prototype
	Threat Model and Assumptions
	Protection Properties and Invariants
	Supporting Invariant I1
	Supporting Invariant I2

	System Initialization
	Virtual MMU Interface
	Lifetime Kernel Code Integrity
	Virtual Privilege Switches
	Nested Kernel Entry and Exit Gates
	Interrupts
	Nested Kernel Stack
	Ensuring Write Mediation

	Privileged Register Integrity
	Allocating Protected Data Structures
	Mediation Functions
	Implementation

	Enforcing Intra-Kernel Security Policies
	Nested Kernel Write Mediation Policies
	Write-Once Data
	Append-Only Data
	Write Logging

	System Protection Policies

	Evaluation
	Trusted Computing Base and Kernel Porting
	Code Scanning Results
	Privilege Boundary Microbenchmark
	Micro-benchmarks
	Application Benchmarks

	Future Work
	Related Work
	Conclusion

