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Abstract. In this work we present, MicroStache, a specialized hardware
mechanism and new process abstraction for accelerating safe region se-
curity solutions. In the safe region paradigm, an application is split into
safe and unsafe parts. Unfortunately, frequent mixing of safe and unsafe
operations stresses memory isolation mechanisms. MicroStache addresses
this challenge by adding an orthogonal execution domain into the process
abstraction, consisting of a memory segment and minimal instruction
set. Unlike alternative hardware, MicroStache implements a simple mi-
croarchitectural memory segmentation scheme while integrating it with
paging, and also extends the safe region abstraction to isolate data in
the processor cache, allowing it to protect against cache side channel
attacks. A prototype is presented that demonstrates how to automati-
cally leverage MicroStache to enforce security polices, SafeStack and CPI,
with 5% and 1.2% overhead beyond randomized isolation. Despite spe-
cialization, MicroStache enhances a growing and critical programming
paradigm with minimal hardware complexity.
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1 Introduction

Computing systems hold a significant amount of personal data. Unfortunately,
applications are subject to memory safety violations that allow attackers access
to application data or to take over the system. A popular and well explored solu-
tion is to provide full memory safety, which forces all data access to be safe (e.g.,
eliminating writing outside the bounds of an object) [12,15,35,40,34]. Despite
solving the problem, full memory safety comes with too high a price, hindering its
mainstream use. Instead, an emerging paradigm protects only sensitive program
data, such as code pointers [30], cryptographic keys [23], or programmer-defined
structures [8,13]. In general, partial memory safety places sensitive objects into
isolated memory regions, called safe regions [28], that can only be accessed by
privileged program instructions. The result is powerful security solutions (them-
selves eliminating large classes of exploits) at a fraction of the cost.
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Despite the demonstrable rise and power of the safe region paradigm, com-
modity protection mechanisms are inadequate. This is because safe region iso-
lation relies heavily on the interleaving between sensitive and regular memory
accesses, leaving existing mechanisms with two options: either monitor all unsafe
accesses (e.g., sandboxing them using SFI or MPX[43,28,39,8]) or incur costly
protection domain switches (as in SGX, TrustZone, MPK, VMFUNC [28,29]).
Alternatively, tag-based architectures allow policy enforcement at instruction
and word granularity [41,16,9], but require significant hardware enhancements.

The core research question we investigate in this work is how to most ef-
fectively support the safe region paradigm, specifically seeking a hardware ac-
celerated abstraction and mechanism. Our goal is to do so in the most general
and simplest way, so that the design may be portable to alternative architec-
tures, and to efficiently isolate regions within an address space without requiring
explicit monitoring of unsafe operations or domain switching.

To this end, we propose a novel memory abstraction that is isolated by a hard-
ware data structure. MicroStache inserts an independently addressed memory
region, the stache segment, into the standard process environment. The stache
is accessed through a small instruction set extension that operates from within
program context, as an embedded but orthogonal execution domain. The stache
can be used to efficiently realize safe region solutions by controlling when and
where stache access occurs. MicroStache also includes a hardware stack that
not only supports standard stack behavior but also enforces a new stack safety
property, where stack access is restricted to the currently executing frame. Fur-
thermore, we extend the MicroStache abstraction into the microarchitecture to
provide static cache separation and special mechanisms that can be leveraged
by programmers for cache side channel defense.

To demonstrate our system, we show that it can be used for a variety of
security applications that protect sensitive program data and user secrets either
manually or through automated static checking. We implement two memory
safety solutions (SafeStack and Code-Pointer Integrity [30]) and find that, rela-
tive to randomization based isolation, MicroStache incurs 5% and 1.2% overhead
respectively. We demonstrate our claims through a prototype MicroStache im-
plementation for x86-64 in the Gem5 [4] simulator, along with LLVM compiler
support. Overall, our contributions include:

– The design and implementation of MicroStache, a novel abstraction for sen-
sitive data isolation by confining it to a dedicated memory segment and
separating memory accesses at the ISA level (Section 4).

– A framework for implementing arbitrary data protection policies for user ap-
plications, either manually or automatically (using compiler support) and a
demonstration of this framework on several real-world scenarios (Section 5).

– MicroStache Safe Stack and an attack surface analysis that illustrates the
security gained through its enforcement: elimination of 60–75 % of Turing-
complete gadgets and mitigation of cache side channel attacks (Section 7).
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2 Background and Motivation

The primary goal of MicroStache is to provide an abstraction for efficient and
effective in-address space protection of safe regions [28]. Protection means pre-
serving the integrity and confidentiality of sensitive data, (e.g. cryptographic
keys, passwords, shadow structures and metadata used to implement partial
memory safety) stored within the safe region. A secondary goal, is to use the
abstraction as a means with which to specify and enforce data cache isolation.
This section explores the degree to which existing mechanisms solve this issue.
Table 1 compares software and hardware isolation mechanisms, including imple-
mentations available on commodity hardware and state of the art systems.

2.1 Safe Region Paradigm

At it’s core the safe region paradigm places sensitive program data in a special
memory region that is accessible only to a subset of the program’s instructions.
The use of this region depends on the security policy. For example, spatial mem-
ory safety approaches place object bound metadata into the safe region and
verify that pointer dereferences are in bounds [12,15,35,40,34]. The approach
requires that only the security runtime, which updates bounds metadata, is per-
mitted to modify the safe region. In general, there are many security policies
that employ the pattern of allocating sensitive data into the safe region and
then protecting it from unprivileged access (see Koning et al. [28] for a thorough
description of policies). Selecting which instructions are privileged is specific to
the security policy and typically done by a static analysis tool, like a compiler.
Additionally, these policies are best when performed “in context” because they
require frequent access to the safe region.

2.2 Mechanisms

Once data and instructions are divided into privileged and unprivileged parts,
a mechanism is needed to protect at runtime. Typically mechanisms use one of
the following methods: 1) sandboxing, 2) separating, or 3) elevating privileges.

Sandboxing Instructions In the sandboxing approach, the safe region is allo-
cated into the traditional process address space, accessible to regular instructions
which become privileged by definition, and unprivileged instructions are explic-
itly constrained from accessing the safe region. Software Fault Isolation (SFI)
uses an inline reference monitor that denies unprivileged access to the safe re-
gion by checking every access [43,39]. Unfortunately, SFI incurs relatively high
overheads. Intel MPX, accelerates range checks by performing them in hard-
ware [28,8], however, it suffers from costly bounds updating operations, must
still explicitly monitor all unprivileged operations (which can be the majority),
and is x86 specific.
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Table 1. Comparison between data isolation mechanisms. Op. Granularity: opera-
tion granularity (smallest protected unit). Iso Type: type of isolation mechanism—
sandboxing unprivileged instructions; separating into domains requiring context
switches; or elevating privilege on a per instruction basis. Comm.—available in
commodity systems. HW Complexity—complexity of the hardware support re-
quired. Side Channel—provides microarchitectural side channel defense. Over-
head—run-time overhead: ranges based on the minimum and average values reported.
aNonderministic defense. bDepends on address mask. cUnavailable at time of writing.

Mechanism
Op.

Gran.
Iso

Type
Comm.

HW
Complexity

Side
Channel

Overhead

ASLR [30] byte elevate X none – ≈ 0 %a

SFI [39,30] —b sandbox X none – low-high
Segments [46,30] byte elevate X medium – low
MPX [8,28] byte sandbox X medium – medium
MPK [28] page domain X medium – low
VMFUNC [31,28] page domain X high – medium
SGX [3,1] page domain X high – high
TrustZone [2,24] page domain X high – high
HDFI [41] word elevate – medium – low-high
PUMP [38] byte elevate – high – low-high
IMIX [19] page elevate – low – low
MicroStache byte elevate – low X low

Separating into Domains Instead of restricting unprivileged instructions,
domain based schemes place the safe region into an orthogonal area of memory
requiring some form of context switch to access. In this way, each privileged
operation must perform a domain switch, leaving regular instructions unchanged.
Intel SGX, VMFUNC, and MPK, as well as ARM TrustZone provide domain
switch isolation. However, all suffer from high overhead [28].

Elevating Instructions Both prior approaches are costly, requiring either fre-
quent checks to sandbox unprivileged access or incur expensive domain switches.
Elevation based approaches leave unprivileged instructions alone and add mech-
anisms to increase the privilege of the sensitive instructions. Randomization
mechanisms place the safe region in a random location that only the privileged
instructions know [30]. Despite their efficiency, randomization techniques are
probabilistic, leading to exploits [18,22,21].

Split instruction set approaches create special instructions with privileges
to directly access the safe region, while normal instructions are mediated by
custom hardware. In x86-32 segmentation, the safe region is placed in a separate
segment, and then only special segment-based instructions can access the region.
Unfortunately, segmentation has disappeared from modern architectures and its
microarchitecture is complex to support in general. IMIX, adds a new safe region
page permission, which is only accessible through a new instruction [19]. This
scheme is comparable to MicroStache, however, details have yet to be published.
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Another way of elevating specific instructions is to use a tag-based microar-
chitecture. In tagging schemes, each instruction can be tagged with a policy
denoting its privilege. Several tagging schemes have been proposed, but more re-
cently region based schemes, HDFI [41] and the PUMP [38], have demonstrated
the ability to enforce safe region based polices. Despite the powerful nature of
these schemes, they require complex hardware that inhibits path to adoption.
Moreover, partial memory safety techniques such as CPI [30] and DCI [8] are
inherently dependent on the existence of metadata and safe regions, which to
our knowledge HDFI cannot easily implement.

2.3 Extending the Safe Region to Cache Level Isolation

In addition to the safe use of memory, we seek to prevent leakage of secret infor-
mation through cache side channels, which have been used to break confidential-
ity of both cryptographic and non-cryptographic applications. Both software as
well as microarchitectural solutions exist, but not without drawbacks. Software
solutions sidestep microarchitectural modifications [27], thus enabling defenses
on commodity processors, but they also incur substantial overheads due to their
reliance on generic ISA instructions. Microarchitecture-only solutions are gener-
ally faster but lack flexibility [44], because defenses ignore contextual information
about the applications. MicroStache embodies a hardware-software design that
is able to leverage the best of both worlds by extending trust to portions of
the microarchitecture, while also leveraging the compiler to identify the parts
of the program that need protection from cache side channels. Furthermore, the
abstraction boundary provided by the safe region paradigm is similar to the
types of protection desired against side channels. Doing so requires specialized
hardware.

2.4 MicroStache Design Goals

From our analysis, we argue that in-place solutions offer the best in terms of
programmability and efficiency, and identify the following design requirements
that a safe region abstraction should meet:

Requirement 1 (Performance Symmetry). Regular and sensitive memory ac-
cesses should impose the same performance penalty.

Requirement 2 (Programmability). Isolation mechanisms should be generally
programmable, and thus allow the use of arbitrary memory safety techniques.

Requirement 3 (Cross Layer). Isolation mechanisms should provide program-
mers explicit access to microarchitectural state that impact data safety.

MicroStache implements all the stated requirements, being based on a sim-
ple hardware enforced isolation scheme, and exposing simple load/store memory
primitives, thereby incurring minimal performance overhead on applications.
Moreover, MicroStache provides a special cache for sensitive data, with an ap-
propriate maintenance interface.
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3 Threat Model and Assumptions

MicroStache prevents attacks on sensitive data integrity and confidentiality, com-
ing from both malicious user inputs and microarchitectural side channels. We
assume a program to be buggy but not malicious, and that an attacker can in-
voke arbitrary regular reads and writes. When combined with memory safety ap-
proaches (as described in Section 5), MicroStache defends against all control-flow
hijack attacks. Implementing alternative safety solutions would lead to diverse
threat models. We assume all hardware, operating system (OS), and compiler
configuration to be correct, and read-only code and non-executable data.

We assume that the adversary can observe the victim’s use of the processor
cache, but that the adversary cannot observe the data values in the cache. We
assume that the adversary has access to the source code of victim application,
both before and after transformation using our compiler, and that the adversary
cannot directly observe the victim’s secret input data either due to encryption
or due to isolation enforced by the OS. We do not address resource exhaustion
attacks resulting from e.g. cache line locking abuse.

4 MicroStache Design

MicroStache supports the safe region paradigm by using the instruction eleva-
tion approach, where the safe region is placed in an external memory segment,
the stache, and is only accessible through MicroStache instructions. The stache
is an independently addressed segment of physical memory that uses offset-based
addressing—bypassing virtual memory altogether. In this way, MicroStache inte-
grates an isolated execution domain into the process without requiring domain
switching. Figure 1 illustrates the main design elements of MicroStache. An
overview of the MicroStache instruction set and their semantics are presented in
Table 2. In the following we detail (i) the basic stache design, (ii) an extension
that supports stack relative addressing and restricts stack access to the current
frame locals (excluding return address and frame pointers), and (iii) an extension
for mitigating cache side channel attacks.

4.1 Stache Segment

As depicted in Figure 1 the stache segment is a linear region of physical memory,
and its location is dynamically specified by two new privileged registers: the
stache base (xbase) and stache end (xend). The operating system virtualizes
the stache by storing its base and bound as a part of thread state, giving each
process a unique region of physical memory, and not mapping their contents
into any address space. The stache is accessed through load/store operations,
xld and xst, which takes the address as (xbase +offset). The hardware limits
all access to the (xbase,xend) region (avoiding arbitrary access to any physical
address). A safe region application can use the stache by allocating data to it,
and with compiler support, emit stache access instructions for its secure access.
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Fig. 1. MicroStache architecture.

Table 2. MicroStache interface. reg are general-purpose architecture registers. addr
are memory addresses. call and ret also retain their native call/return semantics.

Abstraction Hardware Operation Semantics

Memory

ld/st reg, addr Access regular mapped memory.

xld/xst xbase, addr Access stache segment, relative to xbase.

xlds/xsts xsp, offset Access Safe Stack memory, relative to xsp.

Safe Stack

call addr Initialize new frame on Safe Stack.

xalloc size Allocate space on the Safe Stack.

ret Pop current frame from the Safe Stack.

S-cache
scflush addr, size Flush S-cache lines given by addr and size.

sclock addr, size Lock S-cache lines given by addr and size.

4.2 Safe Stack

In order to efficiently isolate stack data, MicroStache includes stack hardware
support through the following interface: frame creation (call), memory alloca-
tion (xalloc), frame destruction (ret) and stack-pointer-relative stache access
(xlds/xsts) (see semantics in Table 2). The stack is located at the end of the
stache region and grows towards lower addresses, and is only accessible through
xlds/xsts instructions. Beyond standard stack operation, MicroStache guaran-
tees that memory addresses computed for xlds/xsts are always in the range
of xsp and xbp (the active frame) and that even stache relative access through
xld/xst cannot modify the stack, thus ensuring that return address and base
pointer corruption (which could be used for stack pivoting) is not possible. More-
over, the Safe Stack can be used to protect a subset of program control-data and
decision-making non-control data, thus reducing the attack surface for Jump-



8 Lucian Mogosanu, Ashay Rane, and Nathan Dautenhahn

Oriented Programming (JOP) [5] and Data-Oriented Programming (DOP) [25]
attacks. We quantify the value of this design in Section 7.

4.3 Safe Cache

A goal of MicroStache is to mitigate covert information channels without sacri-
ficing application performance. For this purpose, MicroStache routes all sensi-
tive memory accesses through a special cache, the safe cache (S-cache). The
S-cache is a L1 cache similar to the data cache (D-cache), using the same
microarchitecture-defined line update and eviction policy, but accessible only
through MicroStache load and store operations. This is similar to other static
cache partitioning schemes, such as Intel CAT [33].

This design point is sufficient to provide basic separation between regular
and sensitive data, but it does not protect against side channel attacks on the S-
cache. To make this possible, we add two new operations, scflush and sclock,
that can be used by programmers to flush and lock cache lines respectively.
scflush can be used to flush and invalidate cache lines, or the entire cache.
Using scflush, applications and/or the operating system can implement simple
policies such as flushing the S-cache on context switches. However, we expect
this policy to have a significant negative impact on performance. Thus programs
can prevent attackers from flushing or evicting their cache lines from the S-cache
using sclock. However, we note that sclock must still be used correctly in order
to ensure cache side channel protection.

5 Security Applications

In this section we describe how to use MicroStache for improving application
security with minimum performance costs. In many cases, using MicroStache is
a direct translation of safe region use: allocate safe-region data to the stache and
issue MicroStache memory access for elevated access.

5.1 Safe Stack Protection

The safe stack approach [30] splits data on the stack into safe and unsafe based
on the observation that a subset of locally-scoped data can be statically proven
safe. Thus programs can make use of two separate stacks, the safe stack and
the unsafe stack, to hold local variables. This technique can be automatically
applied to existing programs with minimal overhead and no compatibility loss.

MicroStache protects the safe stack by modifying the existing SafeStack
software infrastructure to emit MicroStache instructions instead of traditional
stack instructions. More specifically, we want to (i) allocate data on the Safe
Stack on function entry, using xalloc; and (ii) safely access local variables us-
ing xlds/xsts. This limits safe stack management to MicroStache primitives,
ensuring strong Safe Stack protection against unintended memory accesses.
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5.2 Code-Pointer Integrity

Code-Pointer Integrity (CPI) [30] is a technique that detects corruption of code
pointers, eliminating all control-flow hijack attacks. In CPI, all pointers that
may be used as a target for an indirect call or return operation are protected by
placing pointer metadata and bounds information into a safe region. A compiler
instruments all legitimate definitions of each pointer with a call into the CPI
runtime to update pointer metadata. Then on each pointer use, CPI checks
that the last update was legitimate. By using this Data-Flow Isolation (DFI)
policy [9], CPI gains guaranteed control-flow hijack defense. MicroStache is used
by modifying the CPI runtime to allocate metadata into the stache and replacing
normal loads and stores with stache instructions.

5.3 Secret Pointer Protection

Modern systems make memory corruption attacks harder by relying on infor-
mation hiding mechanisms such as ASLR [20,11]. What this effectively means
is that pointers to locations of certain sections of the program, e.g. code, data,
are hidden, and given to a few elevated instructions at runtime. Unfortunately,
ASLR is susceptible to information leak attacks through memory corruption and
cache and timing side channels [21]. We propose preventing secret pointer leaks
by storing sensitive data in the stache segment. In our proof-of-concept work
(Section 6) we show that hiding the location of the CPI safe region can be eas-
ily achieved by accessing the pointer through MicroStache, and that it requires
minimal modifications to the CPI run-time.

5.4 Secret Computation Defense

We consider the general problem of information leaks through system-level at-
tacks using cache side channels. As long as regular (non-sensitive) data doesn’t
depend on them, sensitive scalar values, e.g. integers, are trivially protected by
MicroStache, because the computations performed, e.g. arithmetic operations,
are invariant with respect to cache usage. Composite values, e.g. arrays, however
may incur side channels depending on the computation that is being performed:
if data dependencies involved in the computation lead to variations in cache
access patterns, then these patterns can reveal parts of the data to an attacker
with partial control over the cache.

We provide the possibility of efficiently performing secret computation through
MicroStache by allowing programmers to lock small amounts of data into the
S-cache. Listing 1.1 illustrates a simple scenario in which a global array, secret,
is subject to computation that could cause leaks via cache side channels, e.g.
data encryption. We make it impossible for attackers to infer bits of secret by
locking it into the S-cache using the sclock primitive.

Note that this approach is limited to small data, i.e. not over the S-cache
size. In this case, MicroStache can be combined with other hardware or software
techniques, as discussed in Section 8.
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int s e c r e t [ARRAY SIZE ]
a t t r i b u t e ( ( s e c r e t ) ) ;

int f ( int input )
{

int r e s u l t ;
s c l o ck ( s e c r e t , s izeof ( s e c r e t ) ) ;
/∗ s ec re t computation ∗/ \ l d o t s
return r e s u l t ;

}

Listing 1.1. Computation on secret data using sclock.

6 Implementation

This section presents the implementation of our MicroStache prototype includ-
ing: microarchitectural simulation in Gem5, LLVM compiler support, and secu-
rity application details.

6.1 Gem5 Hardware Prototype

We built a proof-of-concept prototype of MicroStache for the x86 architecture.
Our implementation consists of a simulated hardware prototype built using
Gem5 [4]. We extended the x86 Gem5 model with MicroStache support: we
added new registers, x86 micro-ops for memory operations and associated macro-
ops by extending the decoder, execution and memory access Gem5 components;
we extended call and ret x86 operations with Safe Stack support; finally, we
extended the TimingSimpleCPU4 generic CPU model with a new port for stache
memory accesses. In a typical scenario, Gem5 MicroStache configuration involves
connecting the memory port to the S-cache, which is then connected to the sys-
tem interconnect. Additionally, we added support for MicroStache in the Gem5
system call emulation mode for stache initialization.

Our current MicroStache prototype does not support S-cache flushing, S-
cache locking and automatic stack frame unwinding on ret. We emulated S-
cache programmable operations by manually loading and/or replacing data in
the S-cache. Similarly, we emulated automatic stack frame unwinding through a
special stack deallocation instruction.

6.2 Software Support

Integrating MicroStache with existing software requires minimal software sup-
port in the compiler toolchain, i.e. assembler (emitting MicroStache opcodes)
and C compiler (MicroStache intrinsics). To demonstrate MicroStache com-
piler support, we added opcode emission support to both LLVM 3.8 and 3.2.
We implemented high-level support for the MicroStache instruction set in two
ways: partial backend support for the LLVM instruction selection passes for

4 http://www.gem5.org/SimpleCPU

http://www.gem5.org/SimpleCPU
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alloca, load and store instructions; and a small run-time comprising general-
purpose ustache alloca, ustache load and ustache store functions for local
and global variables respectively. We used the first implementation to automat-
ically generate instrumented code for Safe Stack use, and the second implemen-
tation to implement CPI, secret pointer, and secret computation protections.

6.3 Security Applications

We implemented Safe Stack support by: modifying the existing SafeStack pass
in LLVM 3.8; and adding backend support for MicroStache safe stack frame man-
agement and load/store accesses to the safe stack. We modified the SafeStack

instrumentation to leave unsafe allocations on the regular stack, and move safe al-
locations to the MicroStache Safe Stack, by replacing safe allocas with xallocs.
Then for load/store instructions to xalloc frames, we emitted xlds/xsts in-
structions in the target-dependent instruction selection phase. In our work we
first attempted to extend LLVM with the MicroStache memory model, which we
found was extremely challenging due to the complexity of modelling Safe Stack
frames in the target-independent instruction selection passes. Although this is
an engineering limitation from MicroStache’s perspective, it is an open area to
explore how to add non-standard memory models to LLVM’s backend.

In order to create a more robust toolchain we switched to LLVM 3.2 which
had both SafeStack and CPI passes implemented. However, in this case we only
added general stache memory access support instead of just the Safe Stack. To
protect the location of the CPI safe region for randomization protection, we
modified the CPI run-time to load and store the pointer to the safe region at
the appropriate times. More exactly, we modified cpi init to store the pointer
after the initial mmap. Similarly, we modified cpi get and cpi set to load the
safe region pointer from the stache segment. Due to the inability of Gem5 to
load dynamically linked executables, we did not protect the GOT. Finally, we
extended the LLVM 3.2 CPI run-time with full MicroStache support, using xld

and xst to manage metadata on the stache.
We implemented two popular [26,42] scenarios involving secret computation:

Dijkstra’s Single Source Shortest Path (SSSP) algorithm, and Top-k selection.
The two algorithms operate on secret data structures: a graph and a binary heap.
We used the Gem5 system call emulation (SE) mode to emulate S-cache locking
by manually loading data into the S-cache before the actual computation.

7 Security and Performance Evaluation

We discuss three aspects pertaining to our MicroStache prototype: we evalu-
ate the security of MicroStache using a safe stack as a reference scenario; we
quantitatively and qualitatively analyze the security of each of the security ap-
plications presented in previous sections; and we measure the execution perfor-
mance of our MicroStache prototype using standard benchmarks as well as the
proof-of-concept scenarios presented in Section 6.
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We ran all the experiments on the Gem5 TimingSimpleCPU model [4]. The
TimingSimpleCPU model, in addition to instruction execution timing, simulates
memory access latencies. We configured a basic Gem5 system comprising a CPU
running at 1GHz, an L1 64 KB D-cache and 32KB I-cache, an S-cache, and a
DDR3 memory controller running at 1600MHz. We connected all the caches to
the memory controller through the default Gem5 system cross-bar memory bus.

7.1 Safe Stack Security Evaluation

We evaluate the effectiveness of our safe stack protection using a security bench-
mark suite similar to RIPE [45]. We implemented attack scenarios for ROP, JOP
and DOP, using memory corruption vectors on the stack: return addresses, func-
tion pointers, setjmp buffers and local variables used for conditional branches.
We compiled the tests and ran them using our MicroStache prototype. All the
benchmarks pass, with the exception of setjmp/longjmp, because setjmp buffers
aren’t protected in our prototype. We observe otherwise that our MicroStache
prototype trivially protects sensitive local variables such as function pointers.

7.2 Security Analysis

We analyze the security of the applications designed in Section 5. More specifi-
cally, we: measure the effectiveness of Safe Stack at reducing ROP [6], JOP [5]
and DOP [25] attack surface; discuss the effectiveness of in protecting secret
pointers; and qualitatively analyze the effectiveness of our protection mecha-
nisms against cache side channel attacks.

To measure the attack surface reduction of our Safe Stack protection, we
define a new static attack surface metric that tracks the number of protected
branches, i.e. branches that are taken correctly as a result of their dependency
on data placed on the Safe Stack. Thus, in our static analysis, a given control-
flow transfer instruction is considered protected if it depends exclusively on safely
accessed data. The Attack Surface Reduction (ASR) metric is:

ASR =
protected branches

protected branches + unprotected branches

Safe Stack Return-Oriented Protection The basic MicroStache Safe Stack pro-
vides full safety for function returns, even without any explicit safe region use.
This ensures that in the event of control-flow hijack attacks, the attacker cannot
obtain control of the program using ROP gadgets.

Safe Stack Forward Indirect Branch Protection We determine the number of
protected indirect forward flows at the LLVM IR level by computing the set of
indirect call and indirect branch instructions. The results of this analysis are
shown in Figure 2. Overall, we observe a significant number of indirect branches
protected while only protecting safe local variables, indicating a powerful element
to new hybridized mitigations for JOP attacks.
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Safe Stack Data-Oriented Protection We determine conditional branch protec-
tion similarly to indirect forward flows. The results are shown in Figure 3. On av-
erage, MicroStache protects approximately 62.7 % of static branches over all the
analyzed programs. Additionally, we wish to assess protection against DOP [25].
DOP attacks involve controlling conditional branches to access data-oriented
gadgets. However, in order for arbitrary execution to be possible, the gadgets
must be controlled using a gadget dispatcher, i.e. branch instructions must reside
in a loop. Thus we determine the reduction of unsafe branches in loops, which
on average is approximately 66.3 %. In order to determine whether we elimi-
nate any of the known DOP vulnerabilities, we manually analyzed the examples
given by Hu et al. [25]. We found out that MicroStache protects all the branch
condition variables in the ProFTPD example, which makes DOP impractical, if
not impossible. We believe that a similar level of protection is provided against
Control-Flow Bending (CFB) attacks [7].

Secret Pointer Protection MicroStache can be used to protect secret pointers, i.e.
pointers that point to sensitive memory locations. We illustrate this by protecting
the location of the CPI safe region (Section 6). This ensures that the safe region
is accessed through a secure interface, which removes information leaks through
memory corruption. Moreover, protecting the GOT and other secret pointers
can further reduce the attack surface, eliminating part of the assumptions about
the layout of the address space made by Evans et al. [17].

Secret Computation Defense MicroStache implicitly provides protection against
cache side channels for scalar values when they are not part of branch conditions,
since their cache location is invariant and they do not incur data dependencies
measurable by the attacker. Protecting variables used in conditional branches
is possible through branch normalization, either manually or by using compiler-
based approaches such as Escort [37]. Composite values can be protected using
sclock. In order to protect secret data for Single Source Shortest Paths (SSSP),
we store and lock both the graph (our secret) and the computed distances. The
reason for also storing the computed distances is that the computation of shortest
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paths depends on the structure of the graph, and thus cache access patterns
would otherwise leak whether an edge exists between two nodes. Similarly, for
Top-k selection we only store and lock the binary tree, since the only data
dependencies occur between tree nodes. Thus in the worst case, the attacker can
infer the size of the data being locked by inspecting S-cache access patterns.

7.3 Performance Evaluation

Our performance evaluation aims to determine: (i) the performance impact of
our modifications on the Gem5 simulator; (ii) the performance impact of Mi-
croStache enforced CPI and SafeStack relative to randomization based protec-
tion; (iii) the performance overhead of secret pointer protections; (iv) the per-
formance overhead of cache side channel defense; and (v) the impact of S-cache
size on performance, in particular of automated safe stack instrumentation.

// Regular s tack // MicroStache
1 : sub $8 , %rsp 1 : x a l l o c $8
2 : mov %rcx , (%rsp ) 2 : xst %rcx , $0
3 : mov (%rsp ) , %rcx 3 : xld %rcx , $0
4 : loop 1b 4 : loop 1b

Listing 1.2. loop hot path implementation. The two versions access the regular stack
and the Safe Stack using regular and MicroStache memory instructions.

Table 3. Micro-benchmark run-time overhead. The baseline is unmodified Gem5 ac-
cessing the regular stack; regular and stache represent the stack that is accessed
(regular, and Safe Stack respectively); loop and recursive are two microbenchmark
implementations which access the stack in a loop and recursively respectively.

Benchmark \Scenario regular stache

loop 0.032 % −0.065 %

recursive 4.168 % 0.379 %

Microbenchmarks We aim to assess the impact on run-time performance of the
Gem5 CPU modifications introduced in Section 6. MicroStache memory access
instructions and their regular counterparts should have similar run-times, as we
use the same logic for memory access requests; the only difference is the mem-
ory ports used, i.e. the S-cache instead of the D-cache. We wrote two micro-
benchmarks that allocate space on the safe stack and read/write the allocated
memory: the first, loop, uses the x86 loop instruction to do this iteratively; the
second, recursive, does the same operation by calling a function recursively.
We implemented two variants for each micro-benchmark, one that reads/writes
to the regular stack using x86 mov instructions, and one using xlds/xsts. An ex-
ample of the hot path in loop is given in Listing 1.2. We set the micro-benchmark
to run the code in the loop a million times. The run-time performance of the
two scenarios relative to the baseline is presented in Table 3. We observe that
the performance is almost the same in each of the scenarios, with the exception
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of the recursive benchmark in the regular case, which has approximately 4 %
overhead. There are two major causes for the large overhead: the modifications
to call and ret (Section 6), which cause it to push the return address to both
the stache segment and the regular stack; and the difference in instruction size
and alignment between regular and stache. The latter influences the perfor-
mance of the Gem5 TimingSimpleCPU fetch unit, which prefetches 8-byte words
on x86-64. This behaviour is expected to occur on real x86 processors, and thus
we assume the compiler optimizes for it in real applications.

Safe Stack SPEC benchmarks To validate our MicroStache prototype, we com-
piled and ran a small subset of the SPEC CPU2006 benchmarks using our mod-
ified SafeStack LLVM pass: gobmk, hmmer, lbm and specrand. Figure 4 shows
the performance of safestack using randomization based protection and stache

relative to the baseline. We believe that the reasons for the high overhead is sim-
ilar to that observed in the microbenchmarks, and can be further optimized at
the compiler level. Many of the test did not compile due to the challenges of
extending LLVM with the non-standard MicroStache memory model.

-1% 0% 3% 6% 9% 12% 15% 18%

445.gobmk

456.hmmer

470.lbm

999.specrand

safestack

microstache

Fig. 4. SPEC CPU2006 run-time performance overhead for safe stack relative to main-
line Gem5 and LLVM 3.8; safestack represents mainline Gem5 and LLVM 3.8 SafeS-
tack; microstache represents MicroStache Gem5 and MicroStache LLVM 3.8.

Secret Pointer Protection Test To measure the performance impact of hiding
secret pointers, we ran a small test suite for our modified version of the CPI
run-time library against the original. The results show less than 1 % overhead,
further demonstrating of the minimal impact of MicroStache hardware.

Code-Pointer Integrity SPEC Benchmarks We instrumented the SPEC bench-
marks using the ASLR based implementation of SafeStack (i.e., using the normal
stack and regular ld/st instructions) and three variants of CPI: ASLR, SFI and
MicroStache. Figures 5 illustrates the results relative to native Gem5 CPU base-
line. The goal of this benchmark is to demonstrate how MicroStache performs
with respect to the randomized version (no checks while using normal ld/st
instructions) and the more costly SFI variant of CPI.
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Fig. 5. CPI overhead relative to native on SPEC. On average MicroStache is 1.2%
slower than randomized and 7.4% faster than SFI.

Cache Side Channel Benchmarks Table 4 shows the performance overhead of
the cache side channel protection. We compare the performance of MicroStache
with Escort [37], a software solution. We observed that MicroStache is compara-
ble with the baseline performance, and in particular in one of the two scenarios,
outperforms the baseline by about 26 %. The Escort prototype has a high per-
formance overhead in the sssp benchmark because it relies on Intel AVX for fast
memory updates, a feature which is not available in our Gem5 MicroStache pro-
totype. The data in our MicroStache benchmark implementation is small enough
that it fits in the S-cache. This would be problematic for large secret data. How-
ever, since MicroStache and Escort use orthogonal mechanisms for computation
involving secrets, in principle they can be used together in the case when the
secret data is too large to fit into the S-cache.

S-cache Size Impact on Performance Adding the S-cache to the system consti-
tutes a trade-off between processor die space and stache segment access latency.

Table 4. Cache side channel protection run-
time overhead. Escort and MicroStache are
measured relative to the baseline (unprotected)
benchmark versions. sssp is a Dijkstra single-
source shortest path (SSSP) implementation;
top-k is a Top-k selection implementation.

Benchmark \System Escort MicroStache

sssp 87.19 % −26.02 %

top-k 0 % 2.05 %

Table 5. SPEC CPU2006 max-
imum run-time stache size.

Benchmark stache size (B)

445.gobmk 440
456.hmmer 808
470.lbm 96
999.specrand 72
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Thus we measured the maximum run-time safe stack size, results are shown in
Table 5.

8 Discussion and Future Work

In this section we discuss MicroStache limitations and outline approaches to
overcome them; and we compare MicroStache with closely related work, namely
HDFI [41]. Cache Side Channel Analysis: To provide complete cache side
channel protection using MicroStache, we plan to leverage automated techniques
for side channel analysis [36,32,37]. Further, we aim to extend our evaluation to
comprise an empirical analysis of cache side channel protection, by simulating a
full-system scenario using Gem5. Exceptional Control Flows: While our safe
stack MicroStache prototype (Section 6) can be used as a shadow stack, it does
not provide support for exceptional control flows, such as setjmp/longjmp and
try/catch. We plan to support this by integrating with related work [14,30,10].
Comparison With HDFI: Song et al. [41] propose fine-grained memory iso-
lation through a hardware element called hardware-assisted data-flow isolation
(HDFI). While HDFI and MicroStache have similar goals, HDFI achieves them
through static 1-bit tagging, while MicroStache uses a statically-allocated mem-
ory region. Both options have benefits. HDFI tagging leaves data in place but
requires a tag cache and lookup operations which impacts performance and hard-
ware complexity, whereas MicroStache is simpler, and it can be used for a larger
set of applications such as general memory safety techniques.

9 Conclusion

In this paper we explored the abstractions necessary for efficient in-address space
safe region protection. We proposed MicroStache, a new microarchitectural iso-
lation mechanism designed on the principle that safely accessed data can be
efficiently protected by separating memory accesses at multiple abstraction lev-
els (ISA, cache, main memory). We showed that the programmability of Mi-
croStache allows it to be employed in a variety of use cases, with no to minimal
overhead. In combination with existing compiler techniques, MicroStache can
be leveraged to efficiently protect a large subset of local variables and sensi-
tive control-flow transfers, significantly reducing the surface of jump-oriented
and data-oriented attacks, as well as information leaks and memory corruption.
Thus we believe MicroStache to be a significant element for fine-grained, flexible
and efficient sensitive data isolation.
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